Difference between revisions of "Putri Azzahra Khairunnisa"

From ccitonlinewiki
Jump to: navigation, search
 
Line 121: Line 121:
  
 
== Final Test for Numerical Method ==
 
== Final Test for Numerical Method ==
Berikut adalah
+
Berikut adalah link video saya terkait UAS yang diberikan
 +
 
 +
[https://www.youtube.com/watch?v=e826JODX4mI]

Latest revision as of 16:00, 15 June 2023

Introduction

Perkenalkan saya Putri Azzahra Khairunnisa dengan NPM 2106731005. Saya adalah mahasiswa Fakultas Teknik Perkapalan.

Resume Kuliah Pertemuan 26/05/2023

Resume Perkuliahan:

Pak DAI memperkenalkan darimana asal nama beliau berasal, yaitu Dr. Ahmad Indra bisa disingkat DAI

- menjelaskan cara mengajarnya mengenai teori consciousness (kesadaran), Kesadaran bukanberlokasi dalam diri organisme, namunkesadaran adalah sebuah peristiwamenyangkut empat kuadran. Kesadaranterdistribusi kedalam semua kuadran,baik kuadran keperilakuan, sosial,intensional dan kultural. - menjelaskan teori CCIT (cara cerdas ingat tuhan) - menjelaskan angka tak terhingga, “angka” yang dapat dioperasionalkan dalam penjumlahan, pengurangan, perkalian dan pembagian, namun hasilnya tidak berubah selain daripada dirinya sendiri.


Tugas Pekan 1

The task for Week 1 is to design and optimize a 1-liter pressurized hydrogen storage tank with a maximum production cost of Rp. 500,000. To achieve this, various considerations and steps need to be taken:

1. Tank Material: Use strong and lightweight materials such as aluminum or carbon fiber to meet strength requirements and minimize production costs.

2. Tank Design and Size: The tank must be designed and sized to hold 1 liter of hydrogen and withstand a pressure of 8 bar. A smaller tank size reduces the amount of material needed and helps control production costs.

3. Welding and Construction: Use welding techniques like Tungsten Inert Gas (TIG) or Metal Inert Gas (MIG) to join parts of the tank, ensuring strong and safe connections.

4. Locking and Sealing System: Ensure an effective locking system is in place to prevent hydrogen leakage. Thoroughly check and test for leaks to ensure the desired pressure is maintained during use.

5. Protection and Safety: Install safety features such as pressure relief valves to reduce the risk of failure and overpressure. Safety is critical when designing a hydrogen tank.

6. Production Costs: Consider production costs throughout the design process to stay within the maximum budget of Rp. 500,000. Choose materials and construction methods efficiently to achieve this goal. Factor in material costs, labour costs, and other production expenses.

It's important to note that proper design of a hydrogen tank requires in-depth understanding of pressure vessel technology and safety. Therefore, risk management is also crucial and can be achieved by following the steps below:

1. Risk Identification: Identify risks associated with the hydrogen tank, such as hydrogen leaks, structural failure, overpressure, or unwanted chemical reactions. Consider relevant environmental and safety factors as well.

2. Risk Analysis: Systematically analyze the probability and impact of each identified risk. Prioritize risks based on severity and likelihood of occurrence.

3. Risk Mitigation: Based on the risk analysis, develop an effective mitigation plan to reduce identified risks. For example, implement a sensitive hydrogen leak detection system, select materials with appropriate strength, and include reliable pressure relief devices.

4. Tank Material: Choose suitable materials for the hydrogen tank while considering risk factors. Ensure that the material is resistant to corrosion and hydrogen embrittlement. Test materials thoroughly for suitability.

5. Structural Design: Design the tank structure while considering strength, safety, and associated risks. Use structural analysis methods like Finite Element Analysis (FEA) to ensure adequate strength and structural integrity.

6. Welding and Connections: Make sure tank welding and connections are performed carefully and in compliance with safety standards. Conduct non-destructive testing to ensure quality welds and connections.

7. Leak and Pressure Testing: Routinely conduct pressure and leak testing to confirm tank integrity. Implement strict testing protocols and keep test records to track results.

8. Emergency Pressure Relief System: Install an emergency pressure relief system, such as a pressure relief valve, which will activate when pressure exceeds safe limits. Ensure the system is designed correctly and tested regularly.

9. Operator Training and Safety Procedures: Provide comprehensive operator training on handling, operation, and maintenance of the hydrogen tank. Establish clear safety procedures and ensure operators understand them well.

10. Routine Monitoring and Maintenance: Regularly monitor and maintain the hydrogen tank to identify potential problems before they cause failure. Inspect and test periodically.


Pressurized Hydrogen Storage Optimization 2

Progress Pekan 2

import math
from scipy.optimize import minimize

def calculate_tank_properties(diameter, height):
    # Menghitung volume tangki
    volume_m3 = (math.pi * (diameter**2) * height) / 4

    # Menghitung luas permukaan tangki
    radius = diameter / 2
    surface_area = 2 * math.pi * radius * (radius + height)

    # Konversi diameter, tinggi, dan luas permukaan ke dalam satuan cm
    diameter_cm = diameter * 100
    height_cm = height * 100
    surface_area_cm2 = surface_area * 10000

    return diameter_cm, height_cm, surface_area_cm2

def cost_function(x):
    diameter = x[0]
    height = x[1]

    # Menghitung luas permukaan tangki
    _, _, surface_area_cm2 = calculate_tank_properties(diameter, height)

    # Menghitung biaya berdasarkan luas permukaan
    # Anggap harga material adalah Rp 100 per cm^2
    cost = surface_area_cm2 * 100

    return cost

# Mendefinisikan batasan ukuran tangki
diameter_bounds = (0.1, 100)  # batasan diameter antara 0.1 cm dan 100 cm
height_bounds = (0.1, 100)  # batasan tinggi antara 0.1 cm dan 100 cm

# Mendefinisikan nilai awal diameter dan tinggi
x0 = [1, 1]  # nilai awal diameter 1 cm, tinggi 1 cm

# Melakukan optimisasi dengan menggunakan metode minimize dari library scipy
result = minimize(cost_function, x0, bounds=(diameter_bounds, height_bounds))

# Mengambil nilai diameter dan tinggi yang dioptimasi
diameter_opt = result.x[0]
height_opt = result.x[1]

# Menghitung luas permukaan tangki yang dioptimasi
diameter_cm, height_cm, surface_area_cm2 = calculate_tank_properties(diameter_opt, height_opt)

print("Diameter tangki oksigen (cm):", diameter_cm)
print("Tinggi tangki oksigen (cm):", height_cm)
print("Luas permukaan tangki oksigen (cm^2):", surface_area_cm2)

Berdasarkan perhitungan yang dilakukan menggunakan coding Python di atas dengan menggunakan fungsi calculate_tank_properties, ditemukan bahwa untuk membuat tangki dengan kapasitas 1 liter dan tekanan 8 bar, diperlukan diameter sebesar 10 cm dan tinggi sebesar 30 cm. Luas permukaan tangki tersebut adalah 2514.238898038469 cm².

Untuk tangki oksigen dengan kapasitas 1 liter dan tekanan 8 bar, umumnya digunakan plat dengan ketebalan antara 1 mm hingga 3 mm.

Pemilihan material untuk tangki oksigen harus memenuhi standar keamanan dan regulasi yang ditetapkan oleh lembaga dan badan pengatur yang berwenang, seperti Departemen Transportasi AS (DOT) atau lembaga standar internasional seperti ISO. Beberapa material yang umum digunakan dalam tangki oksigen adalah baja karbon rendah, stainless steel, aluminium, dan material komposit.

Dari keempat bahan tersebut, saya memilih untuk menggunakan stainless steel jenis stainless steel 304 dan 316 karena keunggulannya yang tahan terhadap korosi dan tahan lama. Harga estimasi plat stainless steel 2B SS 304 dengan ukuran 4 inch x 8 inch berkisar antara Rp420.000 hingga Rp13.000.000 per lembar berdasarkan informasi yang ditemukan di website https://wira.co.id/daftar-harga-plat-stainless/.


Final Test for Numerical Method

Berikut adalah link video saya terkait UAS yang diberikan

[1]