Difference between revisions of "User talk:Sergio.rizky"

From ccitonlinewiki
Jump to: navigation, search
(Created page with "== Introduction == Perkenalkan nama saya Sergio Rizky Fadhila dengan NPM 2106733396 dari program studi teknik perkapalan, saya merupakan mahasiswa kelas Metode Numerik-05 ==...")
 
Line 48: Line 48:
  
 
By implementing these safety measures and following best practices, the risks associated with hydrogen storage can be effectively mitigated, ensuring the safety of both individuals and the surrounding environment.
 
By implementing these safety measures and following best practices, the risks associated with hydrogen storage can be effectively mitigated, ensuring the safety of both individuals and the surrounding environment.
 +
== Final Report of Design & Optimization of Pressurized Hydrogen Storage ==
 +
 +
----
 +
 +
<syntaxhighlight lang="xml">
 +
 +
from scipy.optimize import minimize
 +
 +
# Harga dan kapasitas
 +
harga_per_unit = 100000  # Harga per unit penyimpanan hidrogen
 +
kapasitas_per_unit = 1  # Kapasitas penyimpanan hidrogen per unit
 +
 +
# Anggaran maksimal
 +
budget_maksimal = 500000
 +
 +
# Fungsi tujuan
 +
def fungsi_tujuan(x):
 +
    return -x
 +
 +
# Kendala
 +
def kendala(anggaran):
 +
    return budget_maksimal - (harga_per_unit * anggaran)
 +
 +
kendala_anggaran = {'type': 'ineq', 'fun': kendala}
 +
 +
# Nilai awal
 +
x0 = 0
 +
 +
# Batasan
 +
batas = [(0, None)]
 +
 +
# Menyelesaikan masalah optimisasi
 +
solusi = minimize(fungsi_tujuan, x0, method='SLSQP', bounds=batas, constraints=[kendala_anggaran])
 +
 +
# Menampilkan hasil
 +
print("Status:", solusi.success and "Optimal" or "Tidak ditemukan solusi")
 +
print("Jumlah unit penyimpanan hidrogen yang akan dibeli:", solusi.x[0])
 +
print("Total kapasitas penyimpanan:", solusi.x[0] * kapasitas_per_unit, "liter")
 +
print("Total biaya:", solusi.x[0] * harga_per_unit, "Rupiah")
 +
 +
</syntaxhighlight>
 +
 +
The code above uses the objective function '''to maximize the number of hydrogen storage units to buy'''. The budget constraint is set using the constraint function, which ensures that the total cost does not exceed the given maximum budget. The output will display the number of units that must be purchased, the total storage capacity, and the total cost required.
 +
 +
[[File:Alvin1.jpg|700x400px]]
 +
 +
'''Code that shows us a graph of hydrogen storage optimization taking into account the given capacity and budget constraints.'''
 +
 +
<syntaxhighlight lang="xml">
 +
 +
from scipy.optimize import minimize
 +
 +
# Harga dan kapasitas
 +
harga_per_unit = 100000  # Harga per unit penyimpanan hidrogen
 +
kapasitas_per_unit = 1  # Kapasitas penyimpanan hidrogen per unit
 +
 +
# Anggaran maksimal
 +
budget_maksimal = 500000
 +
 +
# Fungsi tujuan
 +
def fungsi_tujuan(x):
 +
    return -x * kapasitas_per_unit
 +
 +
# Kendala
 +
def kendala(anggaran):
 +
    return budget_maksimal - (harga_per_unit * anggaran)
 +
 +
kendala_anggaran = {'type': 'ineq', 'fun': kendala}
 +
 +
# Nilai awal
 +
x0 = 0
 +
 +
# Batasan
 +
batas = [(0, None)]
 +
 +
# Menyelesaikan masalah optimisasi
 +
solusi = minimize(fungsi_tujuan, x0, method='SLSQP', bounds=batas, constraints=[kendala_anggaran])
 +
 +
# Menampilkan hasil
 +
print("Status:", solusi.success and "Optimal" or "Tidak ditemukan solusi")
 +
print("Jumlah unit penyimpanan hidrogen yang akan dibeli:", solusi.x[0])
 +
print("Total kapasitas penyimpanan:", solusi.x[0] * kapasitas_per_unit, "liter")
 +
print("Total biaya:", solusi.x[0] * harga_per_unit, "Rupiah")

Revision as of 15:53, 9 June 2023

Introduction

Perkenalkan nama saya Sergio Rizky Fadhila dengan NPM 2106733396 dari program studi teknik perkapalan, saya merupakan mahasiswa kelas Metode Numerik-05

Resume Pertemuan 1 (26/5/2023)

Pada pertemuan pertama, saya belajar bahwa dalam matematika pun atau ilmu perhitungan lainyya tidak ada hasil yang exact atau pasti dimana angka yang selama ini kita cari atau hitung merupakan hasil dari pendekatan atau hasil yang mendekati. saya juga belajar bahwa semua yang kita kerjakan pasti kita lakukan secara sadar.


Design & Optimization of Pressurized Hydrogen

A 1-liter hydrogen storage design that is budget-friendly must carefully take into account a number of variables. Here are some ideas to assist you come up with a design concept and optimize it for hydrogen storage at 8 bar pressure with a 1 liter capacity and a maximum spending limit of Rp500,000.

1. Budget-friendly Testing Select lightweight materials that are both affordable and able to endure high pressure. Aluminum alloys or composite materials like carbon fiber reinforced polymers (CFRP) may be suitable choices.

2. Material choice Select lightweight materials that are both affordable and able to endure high pressure. Aluminum alloys or composite materials like carbon fiber reinforced polymers (CFRP) may be suitable choices.

3. Tank Design To use less material while preserving structural integrity, choose a cylinder shape with reinforced walls. To guarantee that the tank can bear the desired pressure of 8 bar, perform a complete stress study.

4. Economical Filling System Consider a simple and cost-efficient filling system. Use standard fittings and connectors to minimize costs. An easy-to-use and secure filling mechanism will ensure safe and efficient refilling of hydrogen.

5. Efficient Sealing Choose an appropriate sealing mechanism to minimize hydrogen leakage. Rubber O-rings or gaskets can provide a reliable and cost-effective seal.

6. Safety Measures Ensure the tank design includes safety features such as a pressure relief valve, burst disk, or a pressure regulator. These components help prevent over-pressurization and ensure safe operation of the system.

7. Insulation To reduce heat transfer and minimize energy loss, consider incorporating efficient insulation materials, such as foams or vacuum insulation panels.

8. Regulators and Valves Include efficient pressure regulators and valves to control the release of hydrogen and maintain a stable pressure within the storage system.

9. Testing and Certification Ensure the hydrogen storage design complies with industry standards and safety regulations. Perform thorough testing, including burst tests and leak checks, to verify the integrity of the storage system.

Keep in mind that it's essential to prioritize safety and guarantee compliance with necessary requirements while maximizing within a constrained budget. Additionally, speaking with hydrogen storage professionals and looking for nearby sources of materials and components may help you locate affordable solutions catered to your unique needs.

For your information i will add a small knowledge that i know from learning in fire safety analysis class (Analisis Keselamatan Kebakaran) When it comes to hydrogen storage, safety considerations include:

Leak Prevention: Ensuring that the storage system is designed and built to prevent hydrogen leakage, as hydrogen is a highly flammable and potentially explosive gas.

Pressure Regulation: Properly regulating the pressure within the storage system to prevent over-pressurization, which can lead to structural failure or rupture.

Ventilation: Providing adequate ventilation to prevent the accumulation of hydrogen gas, which could reach flammable concentrations.

Fire Safety: Implementing measures to mitigate the risk of fire, such as incorporating fire-resistant materials and ensuring proper separation from potential ignition sources.

Explosion Prevention: Incorporating safety devices like pressure relief valves, burst disks, or explosion-proof enclosures to protect against excessive pressure buildup.

Training and Education: Providing comprehensive training and education to individuals involved in the handling and storage of hydrogen to ensure they are aware of safety protocols and best practices.

Compliance with Regulations: Adhering to local, national, and international safety regulations and standards that govern the storage and handling of hydrogen.

By implementing these safety measures and following best practices, the risks associated with hydrogen storage can be effectively mitigated, ensuring the safety of both individuals and the surrounding environment.

Final Report of Design & Optimization of Pressurized Hydrogen Storage


from scipy.optimize import minimize

# Harga dan kapasitas
harga_per_unit = 100000  # Harga per unit penyimpanan hidrogen
kapasitas_per_unit = 1  # Kapasitas penyimpanan hidrogen per unit

# Anggaran maksimal
budget_maksimal = 500000

# Fungsi tujuan
def fungsi_tujuan(x):
    return -x

# Kendala
def kendala(anggaran):
    return budget_maksimal - (harga_per_unit * anggaran)

kendala_anggaran = {'type': 'ineq', 'fun': kendala}

# Nilai awal
x0 = 0

# Batasan
batas = [(0, None)]

# Menyelesaikan masalah optimisasi
solusi = minimize(fungsi_tujuan, x0, method='SLSQP', bounds=batas, constraints=[kendala_anggaran])

# Menampilkan hasil
print("Status:", solusi.success and "Optimal" or "Tidak ditemukan solusi")
print("Jumlah unit penyimpanan hidrogen yang akan dibeli:", solusi.x[0])
print("Total kapasitas penyimpanan:", solusi.x[0] * kapasitas_per_unit, "liter")
print("Total biaya:", solusi.x[0] * harga_per_unit, "Rupiah")

The code above uses the objective function to maximize the number of hydrogen storage units to buy. The budget constraint is set using the constraint function, which ensures that the total cost does not exceed the given maximum budget. The output will display the number of units that must be purchased, the total storage capacity, and the total cost required.

Alvin1.jpg

Code that shows us a graph of hydrogen storage optimization taking into account the given capacity and budget constraints.

<syntaxhighlight lang="xml">

from scipy.optimize import minimize

  1. Harga dan kapasitas

harga_per_unit = 100000 # Harga per unit penyimpanan hidrogen kapasitas_per_unit = 1 # Kapasitas penyimpanan hidrogen per unit

  1. Anggaran maksimal

budget_maksimal = 500000

  1. Fungsi tujuan

def fungsi_tujuan(x):

   return -x * kapasitas_per_unit
  1. Kendala

def kendala(anggaran):

   return budget_maksimal - (harga_per_unit * anggaran)

kendala_anggaran = {'type': 'ineq', 'fun': kendala}

  1. Nilai awal

x0 = 0

  1. Batasan

batas = [(0, None)]

  1. Menyelesaikan masalah optimisasi

solusi = minimize(fungsi_tujuan, x0, method='SLSQP', bounds=batas, constraints=[kendala_anggaran])

  1. Menampilkan hasil

print("Status:", solusi.success and "Optimal" or "Tidak ditemukan solusi") print("Jumlah unit penyimpanan hidrogen yang akan dibeli:", solusi.x[0]) print("Total kapasitas penyimpanan:", solusi.x[0] * kapasitas_per_unit, "liter") print("Total biaya:", solusi.x[0] * harga_per_unit, "Rupiah")