Difference between revisions of "Shafira herdiyan maritza salsabila"

From ccitonlinewiki
Jump to: navigation, search
(Created page with " == Introduction == == INTRODUCTION == ---- Nama : Shafira Herdiyan Maritza Salsabila NPM : 2006574080 Jurusan : Teknik Mesin Reguler METODE NUMERIK 02 == Tugas D...")
 
(INTRODUCTION)
Line 7: Line 7:
  
 
Nama    : Shafira Herdiyan Maritza Salsabila
 
Nama    : Shafira Herdiyan Maritza Salsabila
 +
 
NPM    : 2006574080
 
NPM    : 2006574080
 +
 
Jurusan : Teknik Mesin Reguler
 
Jurusan : Teknik Mesin Reguler
  
 
METODE NUMERIK 02
 
METODE NUMERIK 02
 
  
 
== Tugas Designing Hydrogen Storage  ==
 
== Tugas Designing Hydrogen Storage  ==

Revision as of 08:16, 30 May 2023

Introduction

INTRODUCTION


Nama  : Shafira Herdiyan Maritza Salsabila

NPM  : 2006574080

Jurusan : Teknik Mesin Reguler

METODE NUMERIK 02

Tugas Designing Hydrogen Storage


Hydrogen storage optimization involves determining the most efficient and effective methods for storing hydrogen gas. There are various factors to consider, such as storage capacity, energy density, safety, cost, and practicality. The optimization process typically involves evaluating different storage technologies and their performance characteristics.

To calculate hydrogen storage optimization, you would need to consider the specific requirements and constraints of the application or system where hydrogen is being stored. This could include factors like available space, desired storage duration, required release rates, and any specific safety considerations.

Several storage technologies are commonly used for hydrogen, including compressed gas storage, liquid hydrogen storage, metal hydride storage, and carbon-based materials such as activated carbon or carbon nanotubes. Each technology has its own advantages and limitations in terms of storage capacity, energy density, release rates, and safety.

The calculation process involves assessing the performance parameters of each storage technology and comparing them based on the application requirements. This can include evaluating factors such as the gravimetric and volumetric storage densities, the efficiency of hydrogen uptake and release, the cycling stability, and the overall cost.

Designing hydrogen storage systems requires careful consideration of various aspects to ensure safety, efficiency, and practicality. Here are some key aspects to consider:

1. Storage Method: There are several methods to store hydrogen, including compressed gas, liquefied hydrogen, metal hydrides, chemical storage, and solid-state storage. Each method has its advantages and disadvantages in terms of storage capacity, energy density, safety, and cost. The chosen storage method will depend on the specific application and requirements.

2. Safety: Safety is paramount when designing hydrogen storage systems. Hydrogen is highly flammable and has a wide flammability range, requiring stringent safety measures. The storage system should be designed to prevent leaks, minimize the risk of ignition, and handle any potential releases safely. Safety features such as pressure relief devices, venting systems, and leak detection mechanisms should be incorporated.

3. Storage Capacity and Energy Density: Hydrogen storage systems need to provide sufficient storage capacity and energy density to meet the intended application's requirements. High storage capacity allows for longer operation times, while high energy density enables compact and lightweight storage systems. Balancing these factors with safety considerations is crucial.

4. Efficiency: Efficient storage systems minimize energy losses during storage and retrieval. Consider factors such as heat management, thermal insulation, and energy losses associated with the chosen storage method. Minimizing energy losses ensures that stored hydrogen can be effectively utilized when needed.

5. Scalability: The design should consider scalability to accommodate different storage capacities and application requirements. This is particularly important for applications such as energy storage systems, where the demand may vary over time.

6. Infrastructure and Compatibility: Designing hydrogen storage systems also involves considering the infrastructure and compatibility with existing or planned infrastructure. For example, if the system is intended for transportation, it should be compatible with refueling infrastructure and vehicles. Compatibility with existing hydrogen production and distribution methods is also important.

7. Material Selection: Selecting appropriate materials for the storage system is crucial. The materials should have high strength, durability, and resistance to hydrogen embrittlement. Compatibility with hydrogen gas is essential to prevent material degradation or contamination.

8. Environmental Impact: Consider the environmental impact of the storage system throughout its lifecycle. Assess factors such as energy requirements for manufacturing, recyclability or reusability of materials, and any potential emissions or waste associated with the system.

9. Cost: The cost of designing and implementing the storage system should be considered. Evaluate the costs associated with materials, manufacturing processes, maintenance, and any necessary safety measures. Cost-effectiveness is important for the widespread adoption of hydrogen storage systems.

10. Regulations and Standards: Keep in mind the relevant regulations and standards for hydrogen storage systems. Compliance with safety standards and industry regulations is essential to ensure legal and safe operation.

11. Cost: Evaluate the cost implications of different storage options, including initial investment, maintenance, and operational expenses. Consider the total cost of ownership over the system's lifespan.

Remember that designing hydrogen storage systems can be complex and often requires expertise in various engineering disciplines. Engaging professionals with experience in hydrogen technologies is highly recommended to ensure optimal design and safe operation.