Difference between revisions of "User:PyrenAdam"
Line 55: | Line 55: | ||
The lesson first starts off with 4 keywords: | The lesson first starts off with 4 keywords: | ||
+ | |||
1. Desalination | 1. Desalination | ||
+ | |||
2. Biomass | 2. Biomass | ||
+ | |||
3. Pyrolysis | 3. Pyrolysis | ||
+ | |||
4. Drier | 4. Drier | ||
+ | |||
These 4 are all interconnected in one way or another. | These 4 are all interconnected in one way or another. | ||
Revision as of 14:33, 7 March 2023
Arfadhila Pyrenadi Adam
2006517764
Contents
My Chat with ChatGPT
How are sugarcane productions, battery, and fuel in relationship to one another?
ChatGPT:
Sugarcane production, battery, and fuel are related to one another through the production of biofuels, specifically ethanol. Sugarcane is a primary source of ethanol production, which can be used as fuel for vehicles or other applications.
The process of producing ethanol from sugarcane involves the fermentation of the plant's sugars, which are then distilled into ethanol. This ethanol can be blended with gasoline to produce a biofuel that can power vehicles.
In terms of batteries, sugarcane is also being explored as a potential source for producing high-performance lithium-ion batteries. Researchers have found that a material called lignin, which is present in sugarcane, can be used as a component in the cathodes of these batteries.
Overall, sugarcane has the potential to play an important role in the production of both biofuels and batteries, which are important for reducing our reliance on fossil fuels and transitioning towards more sustainable energy sources.
Intro to OpenModellica
Friday 24 February 2023
Today we learned the basics on using OpenModellica to simulate Internal Combustion Engine System. From the simplest thing, like installing the library, to adding parts and adjusting parameters on the model.
Turbo-Diesel
Topic: Internal Combustion Engine
Effect of Turbocharger on Diesel Engines
Turbo-diesel is essentially a diesel engine equipped with a turbocharger. This causes significant increase in efficiency and power, bringing the power-to-weight ratio as close as a standard petrol engine. Turbodiesels are generally considered more flexible for automotive uses than naturally aspirated Diesel engines. Turbodiesels can be designed to have a more acceptable spread of torque over their speed range or can be designed to improve torque output at a given speed depending on the exact use. Naturally aspirated Diesels, almost without exception, have a lower power output than a petrol engine of the same capacity whilst the same time requiring stronger (and thus heavier) internal components such as the pistons and crankshaft to withstand the greater stresses of the Diesel engine's much higher compression ratio. These factors give naturally aspirated Diesels a poor power-to-weight ratio.
A lean air–fuel ratio, caused when the turbocharger supplies excess air into the engine, is not a problem for diesel engines, because the torque control is dependent on the mass of fuel that is injected into the combustion chamber, rather than the quantity of the air-fuel mixture. Furthermore, the additional quantity of air in the cylinder due to turbocharging effectively increases the compression ratio, which, in a gasoline engine, can cause pre-ignition and high exhaust gas temperatures. However, in a diesel engine, fuel is not present in the combustion chamber during the compression stroke, since it is only added to the combustion chamber shortly before the piston reaches top dead center. Thus, no pre-ignition can occur.
ECS 2 Class 28/02/2023
What actually happens during combustion is vibration. Everything around us is caused by vibration. When talking about any sort of environment, vibration is always related. Electrical appliances with displays are able to show images due to vibration of particles in the screen, releasing light of different frequency. A flame burns a piece of paper.
ECS 2 Class 07/03/2023
The lesson first starts off with 4 keywords:
1. Desalination
2. Biomass
3. Pyrolysis
4. Drier
These 4 are all interconnected in one way or another.
Desalination is used to produce drinking water from regular sea water. There are two main source of demands for drinking or clean water, the general public and the industries. Specifically, there is a program that is run by PLN for carbon capture that is somewhat connected to batteries. This program requires massive amount of resources, thus it should be done through joint effort by multiple entities. On the other hand, sea water is by no means clean. On a microscopic scale, filters made of graphene are used. Graphene is allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure. The name is derived from "graphite" and the suffix -ene, reflecting the fact that the graphite allotrope of carbon contains numerous double bonds. On a macroscopic level, debris throughout the sea is plentiful. Efforts for cleaning this waste are very much mechanical. It takes massive resources, such as ships, to collect this waste. Even then, most waste collected originate from the surface.
Pertamina and other gas industries are currently working towards supplying renewable energy. They turn to gasification, which originates from pyrolysis. Pyrolysis itself is the process of thermal decomposition of materials at elevated temperatures, often in an inert atmosphere. It involves a change of chemical composition. A very simple example of this mentioned in a previous class is a flame that burns a piece of paper.