Difference between revisions of "Juan Andre"
Juan.andre (talk | contribs) |
Juan.andre (talk | contribs) (→Tugas 2. Manometer analog) |
||
Line 78: | Line 78: | ||
1. | 1. | ||
− | Manometer analog memanfaatkan cairan yang terkandung dalam tabung berbentuk U dan beroperasi menggunakan prinsip Keseimbangan Hidrostatik. Cairan di dalam tabung akan mengendap pada ketinggian yang sama di setiap kaki tabung ketika kedua ujungnya terbuka terhadap tekanan atmosfer. | + | Manometer analog memanfaatkan cairan yang terkandung dalam tabung berbentuk U dan beroperasi menggunakan prinsip Keseimbangan Hidrostatik. Cairan di dalam tabung akan mengendap pada ketinggian yang sama di setiap kaki tabung ketika kedua ujungnya terbuka terhadap tekanan atmosfer.Alat pada Manometer analog ialah jarum yang akan bergerak sesuai dengan tingkat deformasi yang diakibatkan tekanan dari fluida yang diukur,mekanismenya memanfaatkan gerakan mekanis dan magnet yang dikombinasikan untuk mengukur tekanan di manometer |
2. | 2. |
Revision as of 19:08, 3 March 2023
Biodata Diri
Nama: Juan Andre Mendaun Karapa
NPM: 2106728130
Hobi: Tidur
Saya adalah mahasiswa FTUI angkatan 2021 dari jurusan Teknik mesin dan saya adalah salah satu ciptaan terbaik dari Tuhan yang Maha Esa karena pada prinsipnya Tuhan yang Maha Esa itu mendesain manusia dengan sebaik baiknya makhluk.
Teknik Mesin merupakan program studi yang saya gemari dikarenakan ayah saya juga merupakan lulusan Teknik Mesin.
Tugas Kinematika 1
Mekanika fluida adalah cabang mekanika yang mempelajari mengenai pergerakan dari fluida. Pergerakan ini diamati dalam bentuk cairan maupun gas. Dalam mekanika fluida juga dipelajari fluida yang tidak dalam keadaan bergerak atau diam.
Tugas chatgpt
Manometer basics.
Juan Andre
What do you know about manometer
A manometer is an instrument used to measure pressure, typically in a fluid, gas or vapor. It works by comparing the pressure of the substance being measured to a reference pressure, usually atmospheric pressure.
There are several types of manometers, including U-tube manometers, inclined-tube manometers, and digital manometers. U-tube manometers consist of a U-shaped tube partially filled with a liquid, typically mercury or water, and the pressure difference between the two ends of the tube is measured by the difference in the liquid levels. Inclined-tube manometers are similar to U-tube manometers, but the tube is inclined at an angle to make it easier to read the measurement. Digital manometers use electronic sensors to measure pressure and display the results digitally.
Manometers are used in a variety of applications, including monitoring pressure in HVAC systems, measuring blood pressure, and measuring the pressure in industrial processes. They are often used in combination with other instruments to provide a complete picture of a system's pressure and flow characteristics.
How it's work
A manometer works by measuring the difference in pressure between two points. One end of the manometer is connected to the substance whose pressure is to be measured, while the other end is open to the atmosphere or connected to a reference pressure. The pressure difference between the two ends causes a change in the level of a liquid column in the manometer.
For example, in a U-tube manometer, a liquid such as mercury or water is partially filled into a U-shaped tube. One end of the tube is open to the substance whose pressure is to be measured, while the other end is open to the atmosphere or connected to a reference pressure. The pressure difference between the two ends causes the liquid level in one arm of the U-tube to rise and the level in the other arm to fall. The difference in the liquid level can be measured and used to calculate the pressure difference.
The height difference in the liquid column is proportional to the difference in pressure between the two points. The pressure can be calculated using the equation:
pressure difference = density x gravity x height difference
where density is the density of the liquid, gravity is the acceleration due to gravity, and height difference is the difference in the height of the liquid column in the manometer.
Other types of manometers, such as digital manometers, use different mechanisms to measure pressure, such as electronic sensors or strain gauges, but they still rely on the principle of comparing the pressure of the substance being measured to a reference pressure.
Juan Andre
But can this manometer works underwater or in vacuum space
The performance of a manometer can be affected by various factors, such as the type of manometer, the properties of the fluid being measured, and the operating conditions.
In general, manometers can work underwater as long as the liquid used in the manometer has a specific gravity greater than that of water and is not affected by the underwater pressure. However, the design of the manometer may need to be adjusted to account for the underwater pressure, which can increase with depth.
In a vacuum space, manometers can still work but may need to be designed differently to operate properly. A traditional U-tube manometer that relies on gravity to move the fluid column may not work in a vacuum since there is no atmospheric pressure to balance the pressure of the fluid being measured. In this case, a different type of manometer, such as a digital manometer, may be needed that does not rely on a fluid column to measure pressure.
It's important to note that not all manometers are suitable for use in extreme conditions like underwater or in a vacuum space, and it's essential to select a manometer that is designed and calibrated for the specific operating conditions and requirements.
Tugas 2. Manometer analog
Pertanyaan
1. Jelaskan mekanisme kerja manometer analog
2. Jelaskan mekanisme kerja manometer tipe U (fluida air)
3. Tuliskan hasil pengukuran P1, P2, dan P2 (ketika menggunakan manometer tipe U)
4. Faktor apa yang mempengaruhi tinggi rendahnya tekanan
5. Tuliskan satuan yang ada pada manometer tersebut dan konversi ke dalam satuan SI
6. Buatlah skala tekanan pada manometer tersebut
Penyelesaian :
1.
Manometer analog memanfaatkan cairan yang terkandung dalam tabung berbentuk U dan beroperasi menggunakan prinsip Keseimbangan Hidrostatik. Cairan di dalam tabung akan mengendap pada ketinggian yang sama di setiap kaki tabung ketika kedua ujungnya terbuka terhadap tekanan atmosfer.Alat pada Manometer analog ialah jarum yang akan bergerak sesuai dengan tingkat deformasi yang diakibatkan tekanan dari fluida yang diukur,mekanismenya memanfaatkan gerakan mekanis dan magnet yang dikombinasikan untuk mengukur tekanan di manometer
2. Tabung U diisi oleh fluida hingga di kedua sisi tabung sama tinggi. Kemudian ujung tabung satu terbuka dan dibiarkan mengalami tekanan lingkungan. Sedangkan ujung satunya dihubungkan ke selang yang mengalirkan sample fluida (udara) bertekanan. Akan terjadi perbedaan ketinggian pada sisi tabung yang mengalami tekanan lingkungan dan yang mengalami tekanan sample fluida yang diukur.
Aliran akan dipompa oleh vacuum pump akan melewati beberapa katup
3. Di manometer analog
Di manometer U, h1=0.2 cm, h2=0.85 cm, h3= 1.15 cm, fluida = air, g = 9.81m/s^2
Percobaan 1 (katup 2 tertutup)
P1 = 10 mbar, P2 = 1.5 mbar
Percobaan 2 (katup 2 terbuka sebanyak 2 putaran keran)
P1 = 8.5 mbar, P2 = 1.25 mbar
Tekanan udara pada percobaan pertama,
P(gas) = ρ(udara) + ρ(air) . g . (h2 - h1)
P(gas) = 101325 N/m^2 + 1000 kg/m^3 . 9.81 m/s^2 . 0.0065 m
P(gas) = 101388 N/m^2 = 101388 Pa
Tekanan udara pada percobaan kedua,
P(gas) = P(udara) + ρ(air) . g . (h3 - h1)
P(gas) = 101325 N/m^2 + 1000 kg/m^3 . 9.81 m/s^2 . 0.0095 m
P(gas) = 101418 N/m^2 = 101418
4. Densitas (kepadatan) dari fluida yang dimasukkan kedalam manometer.
5. pada manometer = mbar
Satuan Internasional (SI) untuk tekanan = Pascal (Pa)
1 mbar = 100 Pa
6. Skala Tekanan: 1 milibar=100 Pa
Juan Andre Hallo
Hello! How can I assist you today?
Juan Andre
Can you solve my homework?
I'll do my best to assist you with your homework! Please provide me with more details about the specific problem or task you need help with.
Juan Andre
So i need you to calculate pressure at the hull of submarine which sink at 30 feet deep underwater
Sure, I can help with that.
The pressure at a certain depth in water is determined by the weight of the water above that depth. This is given by the formula:
Pressure = Density x Gravity x Depth
where:
Density is the density of the fluid (in this case, water) Gravity is the acceleration due to gravity Depth is the depth below the surface of the water Assuming the density of water is 1000 kg/m^3 and gravity is 9.81 m/s^2, we can calculate the pressure at a depth of 30 feet as follows:
Convert feet to meters: 30 feet = 9.144 meters
Plug in the values into the formula: Pressure = Density x Gravity x Depth Pressure = 1000 kg/m^3 x 9.81 m/s^2 x 9.144 m Pressure = 88,029.84 Pascal (Pa)
Therefore, the pressure at the hull of the submarine at a depth of 30 feet underwater is approximately 88,029.84 Pa.
Juan Andre
Oh ok another question
Sure, what's your next question?
Juan Andre
Find the height difference between the free water surface and free oil surfaces,given the oil difference with water surface is 20cm
To find the height difference between the free water surface and free oil surface, we can use the principle of fluid statics, which states that the pressure at any given point in a static fluid is the same in all directions.
Let's assume that the densities of oil and water are ρ_oil and ρ_water, respectively, and that the height difference between the oil and water surfaces is h_oil-water.
We can use the equation for pressure at a depth in a fluid to relate the pressures at the oil and water surfaces:
P_water + ρ_water * g * h_oil-water = P_oil
where P_water and P_oil are the pressures at the free surfaces of water and oil, respectively, and g is the acceleration due to gravity.
Since the pressure at both free surfaces is atmospheric pressure, we can assume that P_water = P_oil = P_atm.
Substituting this into the equation and rearranging, we get:
h_oil-water = (P_atm / (ρ_oil * g)) - (P_atm / (ρ_water * g))
h_oil-water = P_atm * (1 / (ρ_oil * g) - 1 / (ρ_water * g))
Given that the oil/water height difference is 20 cm, or 0.2 m, we can plug in the values for atmospheric pressure, the densities of oil and water, and acceleration due to gravity to find the height difference between the free water surface and free oil surface:
h_oil-water = (101325 Pa) * (1 / (860 kg/m^3 * 9.81 m/s^2) - 1 / (1000 kg/m^3 * 9.81 m/s^2))
h_oil-water = 3.188 x 10^-3 m, or approximately 3.19 mm
Therefore, the height difference between the free water surface and free oil surface is approximately 3.19 mm.