Difference between revisions of "Umar"
(→Pertemuan 6 (23 Desember 2020)) |
(→Pertemuan 6 (23 Desember 2020)) |
||
Line 712: | Line 712: | ||
Kami diberi tugas besar yaitu melakukan oprimasi rangka sederhana, dengan tujuan mendesain rangka yang ''reliable'' dengan biaya yang optimal. Geometri dan ''load'' sudah diberikan Pak Dai di grup whatsapp. Tugas besar ini harus mempertimbangkan tiga variabel bebas yaitu, biaya, material, ''area cross section truss''. Kemudian juga membuat kurva efisiensi biaya dengan ''curve fitting''. Berikut bahan permodelannya : | Kami diberi tugas besar yaitu melakukan oprimasi rangka sederhana, dengan tujuan mendesain rangka yang ''reliable'' dengan biaya yang optimal. Geometri dan ''load'' sudah diberikan Pak Dai di grup whatsapp. Tugas besar ini harus mempertimbangkan tiga variabel bebas yaitu, biaya, material, ''area cross section truss''. Kemudian juga membuat kurva efisiensi biaya dengan ''curve fitting''. Berikut bahan permodelannya : | ||
[[File:soaltubesumar.png|600px|thumb|center]] | [[File:soaltubesumar.png|600px|thumb|center]] | ||
+ | |||
'''Pendefinisian Masalah''' | '''Pendefinisian Masalah''' | ||
+ | |||
Pertama - tama, Saya mendefinisikan node dan elemen pada struktur batang di soal. | Pertama - tama, Saya mendefinisikan node dan elemen pada struktur batang di soal. | ||
[[File:strukturbatangumar.png|600px|thumb|center]] | [[File:strukturbatangumar.png|600px|thumb|center]] |
Revision as of 10:17, 6 January 2021
بِسْمِ اللهِ الرَّحْمَنِ الرَّحِيْمِ
السَّلاَمُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُ
Biodata Diri
Nama : Umar
NPM : 1806200886
TTL : Jakarta, 16 September 2000
Tempat Tinggal: Jakarta
Saya adalah Mahasiswa Fakultas Teknik Universitas Indonesia, Program Studi Teknik Mesin angkatan 2018. Saat ini Saya sedang menempuh perkuliahan di semester 5, yang artinya sudah tahun ketiga pekuliahan.
Alasan Saya mengambil Program Studi (Prodi) Teknik Mesin karena Prodi ini cukup luas prospeknya dan juga prodi yang mempelajari ilmu engineering yang lebih advance dari prodi teknik lainnya menurut Saya dan akan terus digunakan di masa mendatang.
Contents
Pertemuan 1 (11 November 2020)
Setelah melewati pembelajaran selama paruh semester awal dengan Bapak Dr. Ir. Engkos A. Kosasih, M.T. dan melakukan Ujian Tengah Semester (UTS), kelas Metode Numerik - 02 berganti dosen menjadi Bapak Dr. Ir. Ahmad Indra Siswantara atau biasa disapa Pak Da'i. Pada pertemuan pertama setelah UTS ini, Pak Da'i meminta mahasiswa untuk membuat akun pada situs wiki air. Kami dijelaskan bagaimana cara - cara untuk menggunakan wiki air ini supaya lebih familiar dalam menggunakannya, karena tugas - tugas kedepannya akan dikerjakan di wiki air. Pak Da'i pada saat itu juga memaparkan kembali apa tujuan dari pembelajaran metode numerik ini, berikut tujuan - tujuan yang beliau sebutkan :
- Memahami konsep dan prinsip dasar dalam Metode Numerik
- Mampu mengaplikasikan pemahaman dari konsep yang ada di dalam permodelan numerik
- Mampu mengaplikasikan metode numerik dalam persoalan teknik
- Mendapat nilai tambah/moral sehingga kita menjadi orang yang lebih beradab seperti yang sudah tertulis di sila ke-2 Pancasila.
Uniknya pada perkuliahan kemarin Saya mendapat suatu pelajaran hidup bahwa kita sebagai manusia punya limitasi terkait ilmu pengetahuan atau apapun itu, salah satu kasusnya dalam bidang matematika yaitu belum terpecahkan jawaban atau belum terdefinisi jawaban dari bilangan berapapun dibagi dengan 0 (n/0) walaupun menggunakan software sekalipun. Maka dari itu kita bisa petik hikmah bahwa sebagai manusia tidak boleh merasa "tinggi" walaupun orang - orang menganggap kita sebagai orang hebat sekalipun.
Tugas Pertemuan 1
Pada minggu pertama, setiap mahasiswa diminta untuk melihat dan mempraktikan tentang tutorial atau dasar Open Modellica dari youtube. Kemudian diharapkan untuk mengupload video tutorial singkat di Youtube. Berikut ini adalah video tutorial dasar dari saya untuk penghitungan volume langkah piston pada OpenModelica.
Pertemuan 2 (Rabu, 18 November 2020)
Pak Dai menjelaskan bahwa menggunakan Software OpenModelica lebih nyaman dan sederhana dibanding Software atau program yang sejenis lainnya. Sangat cocok untuk digunakan oleh para Engineer, karena dapat menyelesaikan persoalan perhitungan terkait masalah - masalah keteknikan atau permodelan desain (seperti : perpindahan kalor, sistem fluida, pengendalian sistem, dan rangkaian elektronika). Selain itu OpenModelica juga tidak rumit untuk seorang pemula untuk mempelajarinya. Kemudian Open Modelica tidak mempunyai bahasa program sendiri, itulah yang menyebabkan waktu simulasi permodelannya cukup lama. Open modelica memproses data lebih lama dikarenakan Open Modelica harus menerjemahkan perintah yang ditulis ke bahasa C++, setelah diproses baru akan muncul data - data perhitungan yang kita inginkan.
Tugas Pertemuan 2
Berikut tugas kedua yaitu pengaplikasian OpenModelica dengan class dan function dalam permasalahan matriks variabel array
Pertemuan 3 (25 November 2020)
Pada awal-awal Pak Dai memaparkan tiga aplikasi metode numerik yang sering digunakan dalam menyelesaikan permasalahan teknik, pertama ada Computation Fluid Dynamics (CFD), lalu FInite Element Analysis (FEA), dan Metode Stokastik. CFD dan FEA berbasis ilmu fisika, kemudian metode stokastik berbasis data dan statistik. Ada lima langkah yang Pak Dai paparkan dalam mengaplikasikan metode numerik ke permasalahan teknik :
- Riset masalah tekniknya terlebih dahulu
- Menganalisis masalah (mendefinisikan variabel yang mau dicari dan mencari parameter fisikanya)
- Membuat model matematika
- Membuat model numerik
- Setelah itu cari penyelesaian dengan bantuan komputer untuk mendapatkan output yang diinginkan
Agar Kami bisa lebih paham tentang dasar-dasar metode numerik, Pak Dai menyuruh Kami untuk mencoba membuat fungsi untuk menyelesaikan Persamaan 9.12 di buku Numerical Methods for Engineers 7th Edition oleh Chapra dengan cara apapun (misalnya eliminasi gauss). Kedua, Kami disuru latihan menyelesaikan sistem persamaan dengan membuat fungsi penyelesaian dengan cara pseudocode 9.4 untuk menjawab soal 9.5 yang ada di buku yang sama juga. Latihan yang kedua ini dimaksudkan agar Kami paham dalam penggunaan array dalam penggunaan OpenModelica, yang dimana array ini dapat memudahkan mengumpulkan himpunan penyelesaian. Brikut adalah fungsi Gauss Jordan di OpenModelica
function GaussJordan input Real [:,:] A; output Real [:,:] B; protected // untuk local variable Integer h = 1; //pivot row Integer k = 1; //pivot coloumn Integer m = size(A,1); //Number of row Integer n = size(A,2); //Number of column Integer c = 0; Integer max_row; // Row index of max number in pivot column Real [:] pivot_column; Real [:] pivot_row; Real [:,:] temp_array; Real r; Real float_error = 10e-10; algorithm //fungsi input A dan output B B := A; while h <= m and k <= n loop for i in 1 : m loop for j in 1 : n loop if abs(B[i,j]) <= float_error then B[i,j] := 0; end if; end for; end for; //Finding pivot pivot_column:= {B[i,h] for i in h:m}; //Mencari baris terbawah yang mempunyai nilai pivot tertinggi c:=h-1; for element in pivot_column loop c:= c+1; if abs(element)== max(abs(pivot_column)) then max_row :=c; end if; end for; //Jika tidak ada pivot di kolom ini, pindah ke kolom selanjutnya if B[max_row,k] == 0 then k:=k+1; else // tukar row h - max_row temp_array := B; temp_array[h] := B[max_row]; temp_array[max_row] := B[h]; B:= temp_array; //devide pivot row by pivot number B[h] := B[h]/B[h,k]; for i in (h+1) :m loop r := B[i,k]/B[h,k]; B[i,k]:=0; for j in (k+1) : n loop B[i,j] := B[i,j]-B[h,j] * r; end for; end for; //move ke pivot kolom dan row selanjutnya h := h+1; k := k+1; end if; end while; // proses dari kanan atas h :=m; k :=n; while h >=1 and k>=1 loop //dealing with error for i in 1:m loop for j in 1:n loop if abs(B[i,j]) <=float_error then B[i,j]:=0; end if; end for; end for; //finding pivot pivot_row := {B[h,i] for i in 1:k}; //Get position index k of pivot c := 0; for element in pivot_row loop c := c+1; if element <> 0 then break; end if; end for; k:= c; // no pivot in this row, move to next row if B[h,k] == 0 then h:= h-1; else //perform row operatation for i in 1:(h-1) loop r := B[i,k]; B[i] := B[i] - B[h] *r; end for; //move to next pivot row dan column h:=h+1; k:=k+1; end if; end while; end GaussJordan;
Contoh Soal Truss
Kodingan
model Trusses parameter Integer N=10; //Global matrice = 2*points connected parameter Real A=8; parameter Real E=1.9e6; Real G[N,N]; //global Real Ginitial[N,N]; //global Real Sol[N]; //global dispplacement Real X[N]={0,0,0,0,0,0,0,-500,0,-500}; Real R[N]; //global reaction force Real SolMat[N,1]; Real XMat[N,1]; //boundary coundition Integer b1=1; Integer b2=3; //truss 1 parameter Real X1=0; //degree between truss Real k1=A*E/36; Real K1[4,4]; //stiffness matrice Integer p1a=1; Integer p1b=2; Real G1[N,N]; //truss 2 parameter Real X2=135; //degree between truss Real k2=A*E/50.912; Real K2[4,4]; //stiffness matrice Integer p2a=2; Integer p2b=3; Real G2[N,N]; //truss 3 parameter Real X3=0; //degree between truss Real k3=A*E/36; Real K3[4,4]; //stiffness matrice Integer p3a=3; Integer p3b=4; Real G3[N,N]; //truss 4 parameter Real X4=90; //degree between truss Real k4=A*E/36; Real K4[4,4]; //stiffness matrice Integer p4a=2; Integer p4b=4; Real G4[N,N]; //truss 5 parameter Real X5=45; //degree between truss Real k5=A*E/50.912; Real K5[4,4]; //stiffness matrice Integer p5a=2; Integer p5b=5; Real G5[N,N]; //truss 6 parameter Real X6=0; //degree between truss Real k6=A*E/36; Real K6[4,4]; //stiffness matrice Integer p6a=4; Integer p6b=5; Real G6[N,N]; /* for each truss, please ensure pXa is lower then pXb (X represents truss element number) */ algorithm //creating global matrice K1:=Stiffness_Matrices(X1); G1:=k1*Local_Global(K1,N,p1a,p1b); K2:=Stiffness_Matrices(X2); G2:=k2*Local_Global(K2,N,p2a,p2b); K3:=Stiffness_Matrices(X3); G3:=k3*Local_Global(K3,N,p3a,p3b); K4:=Stiffness_Matrices(X4); G4:=k4*Local_Global(K4,N,p4a,p4b); K5:=Stiffness_Matrices(X5); G5:=k5*Local_Global(K5,N,p5a,p5b); K6:=Stiffness_Matrices(X6); G6:=k6*Local_Global(K6,N,p6a,p6b); G:=G1+G2+G3+G4+G5+G6; Ginitial:=G; //implementing boundary condition for i in 1:N loop G[2*b1-1,i]:=0; G[2*b1,i]:=0; G[2*b2-1,i]:=0; G[2*b2,i]:=0; end for; G[2*b1-1,2*b1-1]:=1; G[2*b1,2*b1]:=1; G[2*b2-1,2*b2-1]:=1; G[2*b2,2*b2]:=1; //solving displacement Sol:=Gauss_Jordan(N,G,X); //solving reaction force SolMat:=matrix(Sol); XMat:=matrix(X); R:=Reaction_Trusses(N,Ginitial,SolMat,XMat); end Trusses;
Tugas Pertemuan 3
Kami diberi tugas oleh Pak Dai untuk membuat program sederhana atau penyelesaian dari soal statika struktur dibawah ini dengan OpenModelica
Kodingan
Persamaan class Trusses_HW parameter Integer N=8; //Global matrice = 2*points connected parameter Real A=0.001; //Area m2 parameter Real E=200e9; //Pa Real G[N,N]; //global Real Ginitial[N,N]; //global Real Sol[N]; //global dispplacement Real X[N]={0,0,-1035.2762,-3863.7033,0,0,-1035.2762,-3863.7033}; Real R[N]; //global reaction force Real SolMat[N,1]; Real XMat[N,1]; //boundary condition Integer b1=1; Integer b2=3; //truss 1 parameter Real X1=0; //degree between truss Real k1=A*E/1; Real K1[4,4]; //stiffness matrice Integer p1a=1; Integer p1b=2; Real G1[N,N]; //truss 2 parameter Real X2=0; //degree between truss Real k2=A*E/1; Real K2[4,4]; //stiffness matrice Integer p2a=2; Integer p2b=3; Real G2[N,N]; //truss 3 parameter Real X3=90; //degree between truss Real k3=A*E/1.25; Real K3[4,4]; //stiffness matrice Integer p3a=2; Integer p3b=4; Real G3[N,N]; //truss 4 parameter Real X4=90+38.6598; //degree between truss Real k4=A*E/1.6; Real K4[4,4]; //stiffness matrice Integer p4a=1; Integer p4b=4; Real G4[N,N]; //truss 5 parameter Real X5=90-38.6598; //degree between truss Real k5=A*E/1.6; Real K5[4,4]; //stiffness matrice Integer p5a=3; Integer p5b=4; Real G5[N,N]; /* for each truss, please ensure pXa is lower then pXb (X represents truss element number) */ algorithm //creating global matrice K1:=Stiffness_Matrices(X1); G1:=k1*Local_Global(K1,N,p1a,p1b); K2:=Stiffness_Matrices(X2); G2:=k2*Local_Global(K2,N,p2a,p2b); K3:=Stiffness_Matrices(X3); G3:=k3*Local_Global(K3,N,p3a,p3b); K4:=Stiffness_Matrices(X4); G4:=k4*Local_Global(K4,N,p4a,p4b); K5:=Stiffness_Matrices(X5); G5:=k5*Local_Global(K5,N,p5a,p5b); G:=G1+G2+G3+G4+G5; Ginitial:=G; //implementing boundary condition for i in 1:N loop G[2*b1-1,i]:=0; G[2*b1,i]:=0; G[2*b2-1,i]:=0; G[2*b2,i]:=0; end for; G[2*b1-1,2*b1-1]:=1; G[2*b1,2*b1]:=1; G[2*b2-1,2*b2-1]:=1; G[2*b2,2*b2]:=1; //solving displacement Sol:=Gauss_Jordan(N,G,X); //solving reaction force SolMat:=matrix(Sol); XMat:=matrix(X); R:=Reaction_Trusses(N,Ginitial,SolMat,XMat); end Trusses_HW; |
Fungsi Panggil
Matrice Transformation function Stiffness_Matrices input Real A; Real Y; output Real X[4,4]; Real float_error = 10e-10; final constant Real pi=2*Modelica.Math.asin(1.0); algorithm Y:=A/180*pi; X:=[(Modelica.Math.cos(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y),-(Modelica.Math.cos(Y))^2,-Modelica.Math.cos(Y)*Modelica.Math.sin(Y); Modelica.Math.cos(Y)*Modelica.Math.sin(Y),(Modelica.Math.sin(Y))^2,-Modelica.Math.cos(Y)*Modelica.Math.sin(Y),-(Modelica.Math.sin(Y))^2; -(Modelica.Math.cos(Y))^2,-Modelica.Math.cos(Y)*Modelica.Math.sin(Y),(Modelica.Math.cos(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y); -Modelica.Math.cos(Y)*Modelica.Math.sin(Y),-(Modelica.Math.sin(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y),(Modelica.Math.sin(Y))^2]; for i in 1:4 loop for j in 1:4 loop if abs(X[i,j]) <= float_error then X[i,j] := 0; end if; end for; end for; end Stiffness_Matrices; |
Global Element Matrice function Local_Global input Real Y[4,4]; input Integer B; input Integer p1; input Integer p2; output Real G[B,B]; algorithm for i in 1:B loop for j in 1:B loop G[i,j]:=0; end for; end for; G[2*p1,2*p1]:=Y[2,2]; G[2*p1-1,2*p1-1]:=Y[1,1]; G[2*p1,2*p1-1]:=Y[2,1]; G[2*p1-1,2*p1]:=Y[1,2]; G[2*p2,2*p2]:=Y[4,4]; G[2*p2-1,2*p2-1]:=Y[3,3]; G[2*p2,2*p2-1]:=Y[4,3]; G[2*p2-1,2*p2]:=Y[3,4]; G[2*p2,2*p1]:=Y[4,2]; G[2*p2-1,2*p1-1]:=Y[3,1]; G[2*p2,2*p1-1]:=Y[4,1]; G[2*p2-1,2*p1]:=Y[3,2]; G[2*p1,2*p2]:=Y[2,4]; G[2*p1-1,2*p2-1]:=Y[1,3]; G[2*p1,2*p2-1]:=Y[2,3]; G[2*p1-1,2*p2]:=Y[1,4]; end Local_Global; |
Reaction Matrice Equation function Reaction_Trusses input Integer N; input Real A[N,N]; input Real B[N,1]; input Real C[N,1]; Real X[N,1]; output Real Sol[N]; Real float_error = 10e-10; algorithm X:=A*B-C; for i in 1:N loop if abs(X[i,1]) <= float_error then X[i,1] := 0; end if; end for; for i in 1:N loop Sol[i]:=X[i,1]; end for; end Reaction_Trusses; |
Pertemuan 4 (2 Desember 2020)
Kuis : Membuat class diagram dan flowchart setiap class
Tugas Pertemuan 4
Soal
Flow Chart
Perhitungan di OpenModelica
Berikut kodingannya :
class Trusses3D_Tes //define initial variable parameter Integer Points=4; //Number of Points parameter Integer Trusses=3; //Number of Trusses parameter Real Area=0.0015; //Area parameter Real Elas=70e9; //Elasticity //define connection parameter Integer C[Trusses,2]=[1,2; 1,3; 1,4]; //define coordinates (please put orderly) parameter Real P[Points,3]=[2,0,0; 0,0,1.5; 0,0,-1.5; 0,1.5,0]; //define external force (please put orderly) parameter Real F[Points*3]={0,-5000,0, 0,0,0, 0,0,0, 0,0,0}; //define boundary parameter Integer b[:]={2,3,4}; //solution Real displacement[N], reaction[N]; protected parameter Integer N=3*Points; Integer boundary[3*size(b,1)]=cat(1,(3*b).-2,(3*b).-1,3*b); Real q1[3], q2[3], g[N,N], G[N,N], G_star[N,N], id[N,N]=identity(N), err=10e-10, cx, cy, cz, L, X[3,3]; algorithm //Creating Global Matrix G:=id; for i in 1:Trusses loop for j in 1:3 loop q1[j]:=P[C[i,1],j]; q2[j]:=P[C[i,2],j]; end for; //Solving Matrix L:=Modelica.Math.Vectors.length(q2-q1); cx:=(q2[1]-q1[1])/L; cy:=(q2[2]-q1[2])/L; cz:=(q2[3]-q1[3])/L; X:=(Area*Elas/L)*[cx^2,cx*cy,cx*cz; cy*cx,cy^2,cy*cz; cz*cx,cz*cy,cz^2]; //Transforming to global matrix g:=zeros(N,N); for m,n in 1:3 loop g[3*(C[i,1]-1)+m,3*(C[i,1]-1)+n]:=X[m,n]; g[3*(C[i,2]-1)+m,3*(C[i,2]-1)+n]:=X[m,n]; g[3*(C[i,2]-1)+m,3*(C[i,1]-1)+n]:=-X[m,n]; g[3*(C[i,1]-1)+m,3*(C[i,2]-1)+n]:=-X[m,n]; end for; G_star:=G+g; G:=G_star; end for; //Implementing boundary for i in boundary loop for j in 1:N loop G[i,j]:=id[i,j]; end for; end for; //Solving displacement displacement:=Modelica.Math.Matrices.solve(G,F); //Solving reaction reaction:=(G_star*displacement)-F; //Eliminating float error for i in 1:N loop reaction[i]:=if abs(reaction[i])<=err then 0 else reaction[i]; displacement[i]:=if abs(displacement[i])<=err then 0 else displacement[i]; end for; end Trusses3D_Tes;
Verifikasi Perhitungan
Pertemuan 5 (16 Desember 2020)
Pada pertemuan kelima, Kami diajarkan mengenai pengaplikasian metode numerik dalam optimasi sebuah sistem menggunakan OpenModelica. Materi ini dijelaskan melalui sebuah video oleh Bu Candra serta pseudocode dari persoalan tersebut, contoh persoalan tersebut adalah optimasi menggunakan metode Bracket. Berikut adalah pseudocode yang di OpenModelica :
FungsiObjek.mo function FungsiObjek input Real x; output Real y; algorithm y:= 2*Modelica.Math.sin(x)-x^2/10; end FungsiObjek;
Fungsi tersebut akan dipanggil di suatu file model
BracketOptimal.mo model BracketOptimal parameter Integer n = 8; Real x1[n]; Real x2[n]; Real xup; Real xlow; Real f1[n]; Real f2[n]; Real xopt; Real yopt; Real d; algorithm xup := 4; xlow := 0; for i in 1:n loop d:=((5^(1/2)-1)/2) * (xup-xlow); x1[i] := xlow+d; x2[i] := xup-d; f1[i] := FungsiObjek(x1[i]); f2[i] := FungsiObjek(x2[i]); if f1[i]>f2[i] then xup := xup; xlow := x2[i]; xopt := xup; yopt := f1[i]; else xlow :=xlow; xup := x1[i]; xopt := xup; end if; end for; end BracketOptimal;
Pertemuan 6 (23 Desember 2020)
Tugas Besar
Kami diberi tugas besar yaitu melakukan oprimasi rangka sederhana, dengan tujuan mendesain rangka yang reliable dengan biaya yang optimal. Geometri dan load sudah diberikan Pak Dai di grup whatsapp. Tugas besar ini harus mempertimbangkan tiga variabel bebas yaitu, biaya, material, area cross section truss. Kemudian juga membuat kurva efisiensi biaya dengan curve fitting. Berikut bahan permodelannya :
Pendefinisian Masalah
Pertama - tama, Saya mendefinisikan node dan elemen pada struktur batang di soal.