Difference between revisions of "Yogi Gunawan Atmawijaya"
YogiGunawan (talk | contribs) |
YogiGunawan (talk | contribs) |
||
Line 793: | Line 793: | ||
==Tugas Besar== | ==Tugas Besar== | ||
− | berikut | + | Sebagai tugas besar, kami diberikan sebuah studi kasus berupa desain rangka suatu lemari. Ketentuan kasus tersebut adalah sebagai berikut : |
Revision as of 02:50, 6 January 2021
Biodata
Nama : Yogi Gunawan Atmawijaya
NPM : 1806201005
TTL : 27 Maret 2000
Tempat Tinggal : Tangerang
Saya adalah mahasiswa FTUI angkatan 2018 jurusan Teknik Mesin.
Saya memilih jurusan teknik mesin karena setelah melihat pelajaran-pelajaran di jurusan ini cocok dengan minat saya dan saya yakin saya bisa kuliah dengan baik di Teknik Mesin
Contents
Metode Numerik
Pelajaran yang sudah saya pelajari di setengah semester pertama pada mata kuliah metode numerik yang diajar oleh Dr. Ir. Engkos Achmad Kosasih M.T. adalah :
- macam-macam error
- turunan numerik
- metode bisection
- metode newton-raphson
- metode secant
- deret mc laurint.
Minggu 1 (Rabu, 11 November 2020)
Ada 4 tujuan metode numerik
- 1. memahami konsep dengan dengan baik tentang dasar-dasar metode numerik. bila dasarnya tidak paham konsep dengan baik, maka tidak akan mengerti.
- 2. mampu menerapkan pemahaman konsep tersebut didalam permodelan numerik
- 3. mampu menerapkan metode numerik dipersoalan keteknikan
- 4. untuk mendapat nilai tambah membuat kita menajadi manusia yang beradab
Pada diskusi hari ini, Rabu, 11 Nov 2020, saya mempelejari bahwa komputer walaupun bisa memudahkan pekerjaan kita tetapi komputer juga mempunyai keterbatasan. Jadi sejatinya kita tidak dapat mengandalkan komputer sepenuhnya. Dan sebagai manusia kita juga tidak luput dari ketidaktahuan karena sejatinya hanya Tuhan yang Maha Tahu
Tugas 1
Untuk tugas minggu 1 kami diminta untuk melihat tutorial Open Modelica dari youtube. Setelah melihat tutorial tersebut kami membuat video tutorial singkat. Berikut ini adalah video tutorial OpenModelica Basic
Minggu 2 (Rabu, 18 November 2020)
Sebelum dijelaskan materi, kami diminta mereview hal-hal apa saja yang sudah kami pelajari diminggu 1 dan apa saja hal yang sudah dicoba untuk tugas 1 yaitu memepelajari dasar dari Open Modelica. Pak Dai menjelaskan kenapa Pak Dai memilih aplikasi open modelica dibandingkan program lain untuk tools belajar kami. Pak Dai menjelaskan bahwa aplikasi Open Modelica ini sebenarnya bukan aplikasi programing, melainkan aplikasi untuk modelling. Open Modelica tidak mempunyai bahasa program sendiri, itu kenapa proses dari simulasi Open Modelica ini lebih lama dibandingkan aplikasi lain. Open modelica memproses data lebih lama dikarenakan Open Modelica harus menerjemahkan perintah yang kita tulis menjadi bahasa C++, setelah itu baru data bisa diproses.
Setelah itu kami diminta mencoba membuat suatu file class yang digunakan untuk "memanggil" suatu fungsi dari file function. Kami membuat file function sebagai berikut :
FungsiTambahX1.mo
function FungsiTambahX1 input Real x; output Real y; algorithm y:=x+10; end FungsiTambahX1;
Setelah itu kami membuat file class untuk "memanggil" fungsi dari file function diatas. Pseudocodenya sebagai berikut :
Panggil.mo
class Panggil parameter Real x1=5; Real hasil10tambahx1; equation hasil10tambahx1=FungsiTambahX1(x1); end Panggil;
Dijelaskan dengan memanggil file function diatas, maka pada saat di file class, inputnya menjadi x1 dimana x1 tersebut mempunyai nilai dan nilai tersebut akan menjadi input dari persamaan yang masukan di file FungsiTambahX1.mo
Tugas 2
Untuk tugas 2, kami diminta untuk membuat suatu fungsi panggil seperti yang dicontohkan pada saat kelas menggunakan persamaan aljabar simultan dan variable array. Persamaan Aljabar Simultan sendiri adalah persamaan yang kompleks karena memiliki banyak variable yang perlu dicari nilainya. Variable array adalah variable yang didalamnya memiliki beberapa data nilai. Pada tugas ini saya mencoba membuatnya menggunakan 3 persamaan sederhana yang memiliki 3 variable yang harus dicari nilainya. persamaannya adalah sebagai berikut :
Lalu saya buat file function sebagai berikut :
Gauss_Function.mo
function Gauss_Function input Real P[3,3]; input Real Q[3]; output Real R[3]; algorithm R:=Modelica.Math.Matrices.solve(P,Q); end Gauss_Function;
Dan saya membuat file class sebagai berikut :
Gauss_Class.mo
class Gauss_Class parameter Real A[3,3]=[2,5,3;3,4,2;1,3,1]; parameter Real B[3]={1,-3,2}; Real X[3]; equation X=Gauss_Function(A,B); end Gauss_Class;
Berikut adalah video penjelasan tentang pembuatan 2 file diatas :
Minggu 3 (Rabu, 25 November 2020)
Pada minggu ketiga, kami dijelaskan tentang pseudocode gauss elimination secara manual. Pak Dai menginginkan kami bisa membuat pseudocode sendiri tanpa menggunakan fungsi yang sudah disediakan dari OpenModelica itu sendiri. Jadi pada saat dikelas kami dijelaskan oleh Christo. Christo adalah salah satu mahasiswa yang juga mengambil mata kuliah metode numerik yang diajar oleh pak Dai. Christo menjelaskan dengan sangat jelas psudocode untuk gauss. Pseudocode dari gauss jordan berdasarkan apa yang sudah Christo jelaskan adalah sebagai berikut :
GaussJordan.mo
function GaussJordan input Real [:,:] A; output Real [:,:] B; protected // untuk local variable Integer h = 1; //pivot row Integer k = 1; //pivot coloumn Integer m = size(A,1); //Number of row Integer n = size(A,2); //Number of column Integer c = 0; Integer max_row; // Row index of max number in pivot column Real [:] pivot_column; Real [:] pivot_row; Real [:,:] temp_array; Real r; Real float_error = 10e-10; algorithm //fungsi input A dan output B B := A; while h <= m and k <= n loop for i in 1 : m loop for j in 1 : n loop if abs(B[i,j]) <= float_error then B[i,j] := 0; end if; end for; end for; //Finding pivot pivot_column:= {B[i,h] for i in h:m}; //Mencari baris terbawah yang mempunyai nilai pivot tertinggi c:=h-1; for element in pivot_column loop c:= c+1; if abs(element)== max(abs(pivot_column)) then max_row :=c; end if; end for; //Jika tidak ada pivot di kolom ini, pindah ke kolom selanjutnya if B[max_row,k] == 0 then k:=k+1; else // tukar row h - max_row temp_array := B; temp_array[h] := B[max_row]; temp_array[max_row] := B[h]; B:= temp_array; //devide pivot row by pivot number B[h] := B[h]/B[h,k]; for i in (h+1) :m loop r := B[i,k]/B[h,k]; B[i,k]:=0; for j in (k+1) : n loop B[i,j] := B[i,j]-B[h,j] * r; end for; end for; //move ke pivot kolom dan row selanjutnya h := h+1; k := k+1; end if; end while; // proses dari kanan atas h :=m; k :=n; while h >=1 and k>=1 loop //dealing with error for i in 1:m loop for j in 1:n loop if abs(B[i,j]) <=float_error then B[i,j]:=0; end if; end for; end for; //finding pivot pivot_row := {B[h,i] for i in 1:k}; //Get position index k of pivot c := 0; for element in pivot_row loop c := c+1; if element <> 0 then break; end if; end for; k:= c; // no pivot in this row, move to next row if B[h,k] == 0 then h:= h-1; else //perform row operatation for i in 1:(h-1) loop r := B[i,k]; B[i] := B[i] - B[h] *r; end for; //move to next pivot row dan column h:=h+1; k:=k+1; end if; end while; end GaussJordan;
Lalu kami diminta untuk membuat pseudocode open modelica dari suatu pseudocode matlab yang ada dibuku yaitu Fig. 9.4 :
Pseudocodenya adalah sebagai berikut :
NaiveGauss.mo
function NaiveGauss input Real [3,3] A; input Real [3] B; output Real [3] x; protected Real [3,3] a; Real [3] b; Integer m = size(A,1); // kolom Integer n = size(A,2); // baris Real k = 1; Real i = 1; Real j = 1; Real factor = 1; Real sum = 1; algorithm // Transfer input matrix (A,B) into variables (a,b) a := A; b := B; // Forward Elimination for k in 1:(n-1) loop for i in (k+1):n loop factor := a[i,k] / a[k,k]; for j in (k+1):n loop a[i,j] := a[i,j] - (factor * a[k,j]); end for; b[i] := b[i] - (factor * b[k]); end for; end for; // Back Substitution x[n] := b[n] / a[n,n]; for i in (n-1):(-1) loop sum := b[i]; for j in (i+1):n loop sum := sum - (a[i,j] * x[j]); end for; x[i] := sum / a[i,i]; end for; end NaiveGauss;
Lalu pseudocode tersebut digunakan untuk menyelesaikan persamaan example 9.5 dan penyelesaiannya adalah sebagai berikut :
Ex9_5.mo
class Ex9_5 parameter Real A[3,3]=[3,-0.1,-0.2; 0.1,7,-0.3; 0.3,-0.2,10]; parameter Real B[3]={7.85,-19.3,71.4}; Real x[3]; equation x=NaiveGauss(A,B); end Ex9_5;
Dari class tersebut disimulate dan didapatkan hasil sebagai berikut :
Tugas 3
Pada tugas kali ini, Pak Dai memberikan tugas mengenai materi Truss yang harus diselesaikan menggunakan Open Modelica. Soalnya adalah sebagai berikut :
Langkah pertama saya membuat matriks sesuai aturan yang sudah dijelaskan didalam buku. Lalu matriks tersebut diselesaikan didalam open modelica dengan psudocode sebagai berikut :
Tugas3Truss.mo
class Tugas3Truss Real [8] U; Real [8] R; Real E = 200e9; Real A = 0.001; Real L1 = 1; Real L2 = 1; Real L3 = 1.6; Real L4 = 1.25; Real L5 = L3; Real teta1 = degtorad(0); Real teta2 = degtorad(0); Real teta3 = degtorad(231.34); Real teta4 = degtorad(270); Real teta5 = degtorad(308.66); Real [8,8] K1 = [(E*A/L1)*(cos(teta1))^2,(E*A/L1)*cos(teta1)*sin(teta1),(E*A/L1)*(-(cos(teta1))^2),(E*A/L1)*(-cos(teta1)*sin(teta1)),0,0,0,0; (E*A/L1)*cos(teta1)*sin(teta1),(E*A/L1)*(sin(teta1))^2,(E*A/L1)*(-cos(teta1)*sin(teta1)),(E*A/L1)*(-(sin(teta1))^2),0,0,0,0; (E*A/L1)*(-(cos(teta1))^2),(E*A/L1)*(-cos(teta1)*sin(teta1)),(E*A/L1)*(cos(teta1))^2,(E*A/L1)*cos(teta1)*sin(teta1),0,0,0,0; (E*A/L1)*(-cos(teta1)*sin(teta1)),(E*A/L1)*(-(sin(teta1))^2),(E*A/L1)*cos(teta1)*sin(teta1),(E*A/L1)*(sin(teta1))^2,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0]; Real [8,8] K2 = [0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,(E*A/L2)*(cos(teta2))^2,(E*A/L2)*cos(teta2)*sin(teta2),(E*A/L2)*(-(cos(teta2))^2),(E*A/L2)*(-cos(teta2)*sin(teta2)),0,0; 0,0,(E*A/L2)*cos(teta2)*sin(teta2),(E*A/L2)*(sin(teta2))^2,(E*A/L2)*(-cos(teta2)*sin(teta2)),(E*A/L2)*(-(sin(teta2))^2),0,0; 0,0,(E*A/L2)*(-(cos(teta2))^2),(E*A/L2)*(-cos(teta2)*sin(teta2)),(E*A/L2)*(cos(teta2))^2,(E*A/L2)*cos(teta2)*sin(teta2),0,0; 0,0,(E*A/L2)*(-cos(teta2)*sin(teta2)),(E*A/L2)*(-(sin(teta2))^2),(E*A/L2)*cos(teta2)*sin(teta2),(E*A/L2)*(sin(teta2))^2,0,0; 0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0]; Real [8,8] K3 = [0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,0,0,(E*A/L3)*(cos(teta3))^2,(E*A/L3)*cos(teta3)*sin(teta3),(E*A/L3)*(-(cos(teta3))^2),(E*A/L3)*(-cos(teta3)*sin(teta3)); 0,0,0,0,(E*A/L3)*cos(teta3)*sin(teta3),(E*A/L3)*(sin(teta3))^2,(E*A/L3)*(-cos(teta3)*sin(teta3)),(E*A/L3)*(-(sin(teta3))^2); 0,0,0,0,(E*A/L3)*(-(cos(teta3))^2),(E*A/L3)*(-cos(teta3)*sin(teta3)),(E*A/L3)*(cos(teta3))^2,(E*A/L3)*cos(teta3)*sin(teta3); 0,0,0,0,(E*A/L3)*(-cos(teta3)*sin(teta3)),(E*A/L3)*(-(sin(teta3))^2),(E*A/L3)*cos(teta3)*sin(teta3),(E*A/L3)*(sin(teta3))^2]; Real [8,8] K4 = [0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,(E*A/L4)*(cos(teta4))^2,(E*A/L4)*cos(teta4)*sin(teta4),0,0,(E*A/L4)*(-(cos(teta4))^2),(E*A/L4)*(-cos(teta4)*sin(teta4)); 0,0,(E*A/L4)*cos(teta4)*sin(teta4),(E*A/L4)*(sin(teta4))^2,0,0,(E*A/L4)*(-cos(teta4)*sin(teta4)),(E*A/L4)*(-(sin(teta4))^2); 0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,(E*A/L4)*(-(cos(teta4))^2),(E*A/L4)*(-cos(teta4)*sin(teta4)),0,0,(E*A/L4)*(cos(teta4))^2,(E*A/L4)*cos(teta4)*sin(teta4); 0,0,(E*A/L4)*(-cos(teta4)*sin(teta4)),(E*A/L4)*(-(sin(teta4))^2),0,0,(E*A/L4)*cos(teta4)*sin(teta4),(E*A/L4)*(sin(teta4))^2]; Real [8,8] K5 = [(E*A/L5)*(cos(teta5))^2,(E*A/L5)*cos(teta5)*sin(teta5),0,0,0,0,(E*A/L5)*(-(cos(teta5))^2),(E*A/L5)*(-cos(teta5)*sin(teta5)); (E*A/L5)*cos(teta5)*sin(teta5),(E*A/L5)*(sin(teta5))^2,0,0,0,0,(E*A/L5)*(-cos(teta5)*sin(teta5)),(E*A/L5)*(-(sin(teta5))^2); 0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; (E*A/L5)*(-(cos(teta5))^2),(E*A/L5)*(-cos(teta5)*sin(teta5)),0,0,0,0,(E*A/L5)*(cos(teta5))^2,(E*A/L5)*cos(teta5)*sin(teta5); (E*A/L5)*(-cos(teta5)*sin(teta5)),(E*A/L5)*(-(sin(teta5))^2),0,0,0,0,(E*A/L5)*cos(teta5)*sin(teta5),(E*A/L5)*(sin(teta5))^2]; Real KG[8,8]=K1+K2+K3+K4+K5; Real KGB[8,8] = [10^6,0,0,0,0,0,0,0; 0,10^6,0,0,0,0,0,0; -2e7,0,4e7,38223.5,-2e7,0,-91.3155,-38223.5; 0,0,38223.5,1.5e7,0,0,-38223.5,-1e7; 0,0,0,0,10^6,0,0,0; 0,0,0,0,0,10^6,0,0; -4e6,-6e6,-91.3155,-38223.5,-4e6,-6e6,9.7e6,51373.2; 6e6,-7e6,-38223.5,-1e7,-6e6,-7e6,51373.2,3.1e7]; Real F[8] = {0,0,-1035.276,3863.703,0,0,-1035.276,3863.703}; equation U = GaussJordan(KGB,F); R = KG * U - F; end Tugas3Truss;
Setelah disimulate, didapatkan hasil sebagai berikut :
Minggu 4 (Rabu, 2 Desember 2020)
Kuis 01, Diagram Class dan Flowchart
Flowchart
Class Diagram
Tugas 4
Melanjutkan tugas 3, pada tugas 4 kali ini, kami diminta untuk menyelesaikan permasalahan truss 3 dimensi.
Lalu pertama-tama saya membuat FBD dari sistem truss tersebut dan mencari semua data untuk semua truss pada sistem tersebut.
Lalu proses semua data berdasarkan rumus yang ada didalam open modelica
StiffnessMatrixElement.mo function StiffnessMatrixElement input Real [:,9] inisiasi_mat; output Real [size(inisiasi_mat,1),6,6] Ke_mat; protected Real cos_x; Real cos_y; Real cos_z; Real [6] StiffTrig; Real [6,6] StiffTrans; Real [size(inisiasi_mat,1)] k_vec; algorithm k_vec := {(inisiasi_mat[i,7] * inisiasi_mat[i,8] / inisiasi_mat[i,9]) for i in 1:size(inisiasi_mat,1)}; // Finding stiffness matrix of each element member for i in 1:size(inisiasi_mat,1) loop // Clearing the matrices StiffTrig := zeros(6); StiffTrans := zeros(6,6); // Converting degrees to radians cos_x := inisiasi_mat[i,4]; cos_y := inisiasi_mat[i,5]; cos_z := inisiasi_mat[i,6]; // {cos^2, sin^2, sincos} StiffTrig := {(cos_x)^2, (cos_y)^2, (cos_z)^2, (cos_x*cos_y), (cos_x*cos_z), (cos_y*cos_z)}; // Construct stiffness transformation matrix StiffTrans := [ StiffTrig[1], StiffTrig[4], StiffTrig[5], -1*StiffTrig[1], -1*StiffTrig[4], -1*StiffTrig[5]; StiffTrig[4], StiffTrig[2], StiffTrig[6], -1*StiffTrig[4], -1*StiffTrig[2], -1*StiffTrig[6]; StiffTrig[5], StiffTrig[6], StiffTrig[3], -1*StiffTrig[5], -1*StiffTrig[6], -1*StiffTrig[3]; -1*StiffTrig[1], -1*StiffTrig[4], -1*StiffTrig[5], StiffTrig[1], StiffTrig[4], StiffTrig[5]; -1*StiffTrig[4], -1*StiffTrig[2], -1*StiffTrig[6], StiffTrig[4], StiffTrig[2], StiffTrig[6]; -1*StiffTrig[5], -1*StiffTrig[6], -1*StiffTrig[3], StiffTrig[5], StiffTrig[6], StiffTrig[3]]; // Multiply in stiffness constant of element, add final stiffness matrix to Ke_mat for m in 1:6 loop for n in 1:6 loop Ke_mat[i,m,n] := k_vec[i] * StiffTrans[m,n]; end for; end for; end for; end StiffnessMatrixElement;
Setelah itu dibuat matriks K global 12x12 dari masing-masing element
StiffnessMatrixGlobal.mo function StiffnessMatrixGlobal input Integer [:,2] n; input Integer x; input Integer y; input Real [y,6,6] Ke_mat; output Real [y,x,x] Kg_mat; algorithm for i in 1:y loop for a in 1:x loop for b in 1:x loop Kg_mat[i,a,b]:=0; end for; end for; end for; for i in 1:y loop Kg_mat[i,3*n[i,1],3*n[i,1]]:=Ke_mat[i,3,3]; Kg_mat[i,3*n[i,1],3*n[i,1]-1]:=Ke_mat[i,3,2]; Kg_mat[i,3*n[i,1],3*n[i,1]-2]:=Ke_mat[i,3,1]; Kg_mat[i,3*n[i,1]-1,3*n[i,1]]:=Ke_mat[i,2,3]; Kg_mat[i,3*n[i,1]-1,3*n[i,1]-1]:=Ke_mat[i,2,2]; Kg_mat[i,3*n[i,1]-1,3*n[i,1]-2]:=Ke_mat[i,2,1]; Kg_mat[i,3*n[i,1]-2,3*n[i,1]]:=Ke_mat[i,1,3]; Kg_mat[i,3*n[i,1]-2,3*n[i,1]-1]:=Ke_mat[i,1,2]; Kg_mat[i,3*n[i,1]-2,3*n[i,1]-2]:=Ke_mat[i,1,1]; Kg_mat[i,3*n[i,2],3*n[i,2]]:=Ke_mat[i,6,6]; Kg_mat[i,3*n[i,2],3*n[i,2]-1]:=Ke_mat[i,6,5]; Kg_mat[i,3*n[i,2],3*n[i,2]-2]:=Ke_mat[i,6,4]; Kg_mat[i,3*n[i,2]-1,3*n[i,2]]:=Ke_mat[i,5,6]; Kg_mat[i,3*n[i,2]-1,3*n[i,2]-1]:=Ke_mat[i,5,5]; Kg_mat[i,3*n[i,2]-1,3*n[i,2]-2]:=Ke_mat[i,5,4]; Kg_mat[i,3*n[i,2]-2,3*n[i,2]]:=Ke_mat[i,4,6]; Kg_mat[i,3*n[i,2]-2,3*n[i,2]-1]:=Ke_mat[i,4,5]; Kg_mat[i,3*n[i,2]-2,3*n[i,2]-2]:=Ke_mat[i,4,4]; Kg_mat[i,3*n[i,2],3*n[i,1]]:=Ke_mat[i,6,3]; Kg_mat[i,3*n[i,2],3*n[i,1]-1]:=Ke_mat[i,6,2]; Kg_mat[i,3*n[i,2],3*n[i,1]-2]:=Ke_mat[i,6,1]; Kg_mat[i,3*n[i,2]-1,3*n[i,1]]:=Ke_mat[i,5,3]; Kg_mat[i,3*n[i,2]-1,3*n[i,1]-1]:=Ke_mat[i,5,2]; Kg_mat[i,3*n[i,2]-1,3*n[i,1]-2]:=Ke_mat[i,5,1]; Kg_mat[i,3*n[i,2]-2,3*n[i,1]]:=Ke_mat[i,4,3]; Kg_mat[i,3*n[i,2]-2,3*n[i,1]-1]:=Ke_mat[i,4,2]; Kg_mat[i,3*n[i,2]-2,3*n[i,1]-2]:=Ke_mat[i,4,1]; Kg_mat[i,3*n[i,1],3*n[i,2]]:=Ke_mat[i,3,6]; Kg_mat[i,3*n[i,1],3*n[i,2]-1]:=Ke_mat[i,3,5]; Kg_mat[i,3*n[i,1],3*n[i,2]-2]:=Ke_mat[i,3,4]; Kg_mat[i,3*n[i,1]-1,3*n[i,2]]:=Ke_mat[i,2,6]; Kg_mat[i,3*n[i,1]-1,3*n[i,2]-1]:=Ke_mat[i,2,5]; Kg_mat[i,3*n[i,1]-1,3*n[i,2]-2]:=Ke_mat[i,2,4]; Kg_mat[i,3*n[i,1]-2,3*n[i,2]]:=Ke_mat[i,1,6]; Kg_mat[i,3*n[i,1]-2,3*n[i,2]-1]:=Ke_mat[i,1,5]; Kg_mat[i,3*n[i,1]-2,3*n[i,2]-2]:=Ke_mat[i,1,4]; end for; end StiffnessMatrixGlobal;
Setelah itu semua matriks global dari masing-masing element akan dijumlahkan
SumStiffnessMatrixGlobal.mo function SumStiffnessMatrixGlobal input Integer x; input Integer y; input Real [y,x,x] Kg_mat; output Real [x,x] KgTot_mat; algorithm for a in 1:x loop for b in 1:x loop KgTot_mat[a,b] := sum(Kg_mat [:,a,b]); end for; end for; end SumStiffnessMatrixGlobal;
Setelah itu tentukan juga boundaries yang ada
BoundaryStiffnessMatrixGlobal.mo function BoundaryStiffnessMatrixGlobal input Integer x; input Integer z; input Real [x,x] KgTot_met; input Integer[z] Boundary_met; output Real [x,x] KgB_met; algorithm for a in 1:x loop for b in 1:x loop KgB_met[a,b] := KgTot_met [a,b]; end for; end for; for i in 1:x loop for a in 1:z loop for b in 0:2 loop KgB_met[3*(Boundary_met[a])-b,i]:=0; end for; end for; end for; for a in 1:z loop for b in 0:2 loop KgB_met[3*Boundary_met[a]-b,3*Boundary_met[a]-b]:=1; end for; end for; end BoundaryStiffnessMatrixGlobal;
Untuk mencari displacement-nya digunakan gauss jordan untuk menyelesaikan matriks
GaussJordan.mo function GaussJordan input Integer x; input Real [x,x] KgB_met; input Real [x] load_met; output Real [x] U_met; protected Real float_error = 10e-10; algorithm U_met:=Modelica.Math.Matrices.solve(KgB_met,load_met); for i in 1:x loop if abs(U_met[i]) <= float_error then U_met[i] := 0; end if; end for; end GaussJordan;
Dan untuk melihat reaction nya digunakan code sebagai berikut :
ReactionForce.mo function ReactionForce input Integer x; input Real [x,x] KgTot_met; input Real [x] U_met; input Real [x] load_met; output Real [x] R_met; algorithm R_met := (KgTot_met*U_met)-load_met; end ReactionForce;
Terakhir dibuat Class untuk memproses data yang sudah dibuat dan melihat hasil U dan R
Tugas4TrussNo8.mo class Tugas4TrussNo8 parameter Real [:,9] inisiasi = [1, 1, 2, -0.8, 0, -0.6, 15e-4, 70e9, 2.5; 2, 1, 3, -0.8, -0.6, 0, 15e-4, 70e9, 2.5; 3, 1, 4, -0.8, 0, 0.6, 15e-4, 70e9, 2.5]; parameter Integer [:,2] node = [1, 2; 1, 3; 1, 4]; parameter Integer y = size(node,1); parameter Integer x = 3*(size(node_load,1)); parameter Integer z = size(Boundary,1); parameter Integer [:] Boundary = {2,3,4}; parameter Real [:,4] node_load = [1, 0, -5000, 0; 2, 0, 0, 0; 3, 0, 0, 0; 4, 0, 0, 0]; parameter Real [x] load = {0,-5000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; Real [y] k; Real [y,6,6] Ke; Real [y,x,x] Kg; Real [x,x] KgTot; Real [x,x] KgB; Real [x] U; Real [x] R; equation k = {(inisiasi[i,7] * inisiasi[i,8] / inisiasi[i,9]) for i in 1:y}; Ke = StiffnessMatrixElement(inisiasi); Kg = StiffnessMatrixGlobal(node, x, y, Ke); KgTot = SumStiffnessMatrixGlobal(x, y, Kg); KgB = BoundaryStiffnessMatrixGlobal(x, z, KgTot, Boundary); U = GaussJordan(x, KgB, load); R = ReactionForce(x, KgTot, U, load); end Tugas4TrussNo8;
Setelah disimulate, didapatkan hasil dari displacement (U) dan Reaction force (R)
Berikut ini adalah video penjelasan singkat tentang penyelesaian soal diatas
Minggu 5 (Rabu, 16 Desember 2020)
Pada awal kelas, kami diberikan penjelasan bahwa kita belajar tidak hanya dari buku, tetapi kita juga bisa mendapatkan ilmu dari lingkungan sekitar dan praktik sendiri. Maka dari itu, kita harus selalu memperhatikan lingkungan sekitar kita untuk mendapatkan ilmu yang lebih banyak. Ilmu yang sudah kita dapatkan juga sebaiknya kita terapkan/aplikasikan dalam kehidupan kita.
Untuk topik minggu ini, kami dijelaskan tentang optimasi sistem menggunakan Open Modelica. Dijelaskan sistem adalah susunan komponen yang bekerja sama untuk menghasilkan suatu tujuan. Sebelum kelas, kami diberikan video penjelasan tentang contoh kasus optimasi beserta pesudocode nya oleh Bu Candra. Contoh kasus tersebut adalah optimasi menggunakan metode Bracket. Kami diminta untuk mencoba membuat sendiri sebelum memulai kelas dan di kelas kami melakukan diskusi. Saya sudah mencoba membuat code di open modelica. Berikut adalah open modelica yang saya coba buat :
FungsiObjek.mo function FungsiObjek input Real x; output Real y; algorithm y:= 2*Modelica.Math.sin(x)-x^2/10; end FungsiObjek;
Fungsi tersebut akan dipanggil di suatu file model
BracketOptimal.mo model BracketOptimal parameter Integer n = 8; Real x1[n]; Real x2[n]; Real xup; Real xlow; Real f1[n]; Real f2[n]; Real xopt; Real yopt; Real d; algorithm xup := 4; xlow := 0; for i in 1:n loop d:=((5^(1/2)-1)/2) * (xup-xlow); x1[i] := xlow+d; x2[i] := xup-d; f1[i] := FungsiObjek(x1[i]); f2[i] := FungsiObjek(x2[i]); if f1[i]>f2[i] then xup := xup; xlow := x2[i]; xopt := xup; yopt := f1[i]; else xlow :=xlow; xup := x1[i]; xopt := xup; end if; end for; end BracketOptimal;
Dan hasilnya adalah sebagai berikut :
Minggu 6 (23 Desember 2020)
Untuk tugas besar, yang dijelaskan sedikit oleh pak Dai sebagai berikut :
Menurut penejelasan yang saya rasa masih kurang, saya mencoba membuat fungsi objektif. Pada kasus ini, saya mencoba membuat Cross Section Area sebagai variable bebas (X) dan Harga sebagai Variable yang dicari (Y). Material yang dipakai adalah hollow bar mild steel. Data harga saya ambil dari https://www.99.co/blog/indonesia/harga-besi-hollow-terbaru/. Saya buat data tersebut didalam excel dan saya proses untuk mencari persamaan dengan metode regresi di excel. Data yang saya buat sebagai berikut :
Data untuk material adalah sebagai berikut :
Tugas Besar
Sebagai tugas besar, kami diberikan sebuah studi kasus berupa desain rangka suatu lemari. Ketentuan kasus tersebut adalah sebagai berikut :