Difference between revisions of "Alvi Arya Ramadhan"

From ccitonlinewiki
Jump to: navigation, search
Line 682: Line 682:
  
 
Serta File kelas ini akan menjadi fungsi model yang memanggil
 
Serta File kelas ini akan menjadi fungsi model yang memanggil
 +
 +
Tugas Besar Metnum
 +
"Melakukan Optimasi Rangka Sederhana"
 +
 +
-Tujuan: Mendesain Rangka yang reliable dangan cost yang optimal (muraahh)
 +
 +
-Geometri dan Load (liat WA)
 +
 +
-Variabel bebas/factor: (ini kesimpulan)
 +
a. Harga
 +
b. Material (Elastisitas properti)
 +
c. Area Cross Section Truss (L profile/truss siku)
 +
 +
-Membentuk kurva efisiensi harga dengan Curve Fitting

Revision as of 13:54, 23 December 2020

Biodata

Alvi arya.jpeg

assalamualaikum Wr.Wb

Nama : Alvi Arya Ramadhan

NPM  : 1806201434

Tempat, tanggal lahir : Jakarta, 3 Desember 2000

Jurusan : Teknik Mesin

Angkatan : 2018

Saya adalah mahasiswa Semester 5 jurusan teknik mesin FTUI angkatan 2018. Pada semester ini saya mengambil mata kuliah metode numerik untuk menambah kapasitas dalam diri saya dan memenuhi syarat perkuliahan. saya mengambil jurusan ini karena tertarik dengan bidang mekanika serta konversi energi yang akan banyak digunakan dalam industri 4.0 nantinya dan Berharap saya menjadi pribadi yang lebih baik lagi sehingga dapat berguna bagi lingkungan dengan ilmu yang ada dalam diri saya, saya suka olahraga karena menurut saya itu memiliki manfaat dalam jangka panjang baik jasmani dan rohani.

Tujuan dari mata kuliah metode numerik ini antara lain adalah sebagai berikut,

  • Memahami konsep dan prinsip dasar dalam Metode Numerik
  • Dapat menerapkan pemahaman dari konsep yang ada di dalam permodelan numerik
  • Mampu menerapkan Metode Numerik dalam persoalan engineering
  • Mendapat nilai tambah terhadap diri pribadi

Materi Sebelum Uts

sebelumnya saya telah diajarkan beberapa materi sebelum UTS diantaranya:

  • penghitungan deret Taylor dan McLaurin dengan metode forward, center, dan backward;
  • menghitung persamaan dengan metode Bisection, Secant,dan Raphson;
  • mencari nilai interpolasi dan regresi linier menggunakan matriks.

Tugas 1

  • mempelajari mengenai open modelica
  • hasil belajar

Pertemuan (18/11/2020)

Hari ini kita diberi tahu bahwa orang yang yang lebih baik dari hari kemarin adalah orang yang beruntung karena memiliki grafik kehidupan yang meningkat sedangkan orang yang sama saja atau bahkan lebih buruk dari hari kemarin adalah orang yang merugi sebab grafiknya akan menurun. Setelah itu kami diajarkan cara untuk membuat Class panggil dan fungsi untuk membuat sebuah persamaan yang kita rancang sendiri .

Tugas 2

aplikasi modelica dengan class dan funtion dalam permasalahan matriks dengan variabel array

Pertemuan (25/11/2020)

Aplikasi metode numerik dalam permasalahan teknik.

Dijelaskan mengenai Aplikasi Numerik dalam permasalahan Teknik. metode numerik yang sering digunakan untuk melakukan analisa masalah teknik adalah Computation Fluid Dynamics (CFD), Finite Element Analysis (FEA), dan Metode Stokastik. CFD dan FEA berdasarkan hukum-hukum fisika, sementara metode stokastik berbasis data dan statistik. ada beberapa langkah yang harus dilakukan untuk menyelesaikan sebuah masalah teknik, kita harus membuat analisa masalah selanjutnya melakukan permodelan matematis lanjut ke model numerik dan jika sudah mendapatkannya dipindahkan ke komputer sehingga mendapatkan sebuah output berupa solusi permasalahan yang ada.

setelah itu beberapa teman kami menampilkan sesuatu yang telah dia pelajari dan kami semua menyimaknya dengan seksama dalam menyelesaikan sistem persamaan dengan membuat fungsi penyelesaian dengan referensi pseudocode 9.4 untuk soal 9.5 dari buku Numerical Methods for Engineers 7th Edition oleh Chapra.

GaussJordan.mo

function GaussJordan

input Real [:,:] A;
output Real [:,:] B;

protected // untuk local variable
Integer h = 1;    //pivot row
Integer k = 1;    //pivot coloumn
Integer m = size(A,1); //Number of row
Integer n = size(A,2); //Number of column
Integer c = 0;
Integer max_row; // Row index of max number in pivot column

Real [:] pivot_column;
Real [:] pivot_row;
Real [:,:] temp_array;
Real r;

Real float_error = 10e-10;



algorithm

//fungsi input A dan output B 
B := A;
  
while h <= m and k <= n loop

  for i in 1 : m loop
    for j in 1 : n loop
     if abs(B[i,j]) <= float_error then
       B[i,j] := 0;
      end if;
    end for;
  end for;

//Finding pivot 
  pivot_column:= {B[i,h] for i in h:m};
  
    //Mencari baris terbawah yang mempunyai nilai pivot tertinggi
    c:=h-1;
    for element in pivot_column loop
      c:= c+1;
      if abs(element)== max(abs(pivot_column)) then
        max_row :=c;
      end if;
    end for;
    
  //Jika tidak ada pivot di kolom ini, pindah ke kolom selanjutnya
  if B[max_row,k] == 0 then
    k:=k+1;
   
  else 
    // tukar row h - max_row
    temp_array := B;
    temp_array[h] := B[max_row];
    temp_array[max_row] := B[h];
    B:= temp_array;
    
    //devide pivot row by pivot number
     B[h] := B[h]/B[h,k];
     
     for i in (h+1) :m loop
       r := B[i,k]/B[h,k];
      
      B[i,k]:=0;
      
      for j in (k+1) : n loop
        B[i,j] := B[i,j]-B[h,j] * r;
      end for;
    end for;
    
    //move ke pivot kolom dan row selanjutnya
    h := h+1;
    k := k+1;
    
  end if;
  
end while;

// proses dari kanan atas
h :=m;
k :=n;

while h >=1 and k>=1 loop
  
  //dealing with error
  for i in 1:m loop
    for j in 1:n loop
      if abs(B[i,j]) <=float_error then
        B[i,j]:=0;
      end if;
    end for;
  end for; 

//finding pivot 
    pivot_row := {B[h,i] for i in 1:k};
    
    //Get position index k of pivot 
    c := 0;
    for element in pivot_row loop
      c := c+1;
      if element <> 0 then
        break;
      end if;
    end for;
    k:= c;
    
  // no pivot in this row, move to next row
  if B[h,k] == 0 then 
    h:= h-1;
    
  else
    //perform row operatation
    for i in 1:(h-1) loop
      r := B[i,k];
      B[i] := B[i] - B[h] *r;
    end for;
    
    //move to next pivot row dan column
    h:=h+1;
    k:=k+1;
    
  end if;
  
end while;
    
     
end GaussJordan;
Soal buku 9 5.png
Screenshot (86).png
Screenshot (88).png

dengan hasil

Hasil 9 5.png
Hasil buku 9 5.png


Soal alvi.PNG
Grafik Displacement
Grafik Reaction Forces

Persamaan

model Trusses

parameter Integer N=10; //Global matrice = 2*points connected
parameter Real A=8;
parameter Real E=1.9e6;
Real G[N,N]; //global
Real Ginitial[N,N]; //global
Real Sol[N]; //global dispplacement
Real X[N]={0,0,0,0,0,0,0,-500,0,-500};
Real R[N]; //global reaction force
Real SolMat[N,1];
Real XMat[N,1];

//boundary coundition
Integer b1=1;
Integer b2=3;

//truss 1
parameter Real X1=0; //degree between truss
Real k1=A*E/36;
Real K1[4,4]; //stiffness matrice
Integer p1a=1;
Integer p1b=2;
Real G1[N,N];

//truss 2
parameter Real X2=135; //degree between truss
Real k2=A*E/50.912;
Real K2[4,4]; //stiffness matrice
Integer p2a=2;
Integer p2b=3;
Real G2[N,N];

//truss 3
parameter Real X3=0; //degree between truss
Real k3=A*E/36;
Real K3[4,4]; //stiffness matrice
Integer p3a=3;
Integer p3b=4;
Real G3[N,N];

//truss 4
parameter Real X4=90; //degree between truss
Real k4=A*E/36;
Real K4[4,4]; //stiffness matrice
Integer p4a=2;
Integer p4b=4;
Real G4[N,N];

//truss 5
parameter Real X5=45; //degree between truss
Real k5=A*E/50.912;
Real K5[4,4]; //stiffness matrice
Integer p5a=2;
Integer p5b=5;
Real G5[N,N];

//truss 6
parameter Real X6=0; //degree between truss
Real k6=A*E/36;
Real K6[4,4]; //stiffness matrice
Integer p6a=4;
Integer p6b=5;
Real G6[N,N];

/*
for each truss, please ensure pXa is lower then pXb (X represents truss element number)
*/

algorithm

//creating global matrice
K1:=Stiffness_Matrices(X1);
G1:=k1*Local_Global(K1,N,p1a,p1b);

K2:=Stiffness_Matrices(X2);
G2:=k2*Local_Global(K2,N,p2a,p2b);

K3:=Stiffness_Matrices(X3);
G3:=k3*Local_Global(K3,N,p3a,p3b);

K4:=Stiffness_Matrices(X4);
G4:=k4*Local_Global(K4,N,p4a,p4b);

K5:=Stiffness_Matrices(X5);
G5:=k5*Local_Global(K5,N,p5a,p5b);

K6:=Stiffness_Matrices(X6);
G6:=k6*Local_Global(K6,N,p6a,p6b);

G:=G1+G2+G3+G4+G5+G6;
Ginitial:=G;

//implementing boundary condition
for i in 1:N loop
 G[2*b1-1,i]:=0;
 G[2*b1,i]:=0;
 G[2*b2-1,i]:=0;
 G[2*b2,i]:=0;
end for;

G[2*b1-1,2*b1-1]:=1;
G[2*b1,2*b1]:=1;
G[2*b2-1,2*b2-1]:=1;
G[2*b2,2*b2]:=1;

//solving displacement
Sol:=Gauss_Jordan(N,G,X);

//solving reaction force
SolMat:=matrix(Sol);
XMat:=matrix(X);
R:=Reaction_Trusses(N,Ginitial,SolMat,XMat);

end Trusses;

Tugas 3

kami diminta untuk menyederhanakan persamaan dari masalah teknik berikut.

Tugas minggu 3.jpeg
Grafik Displacement
Grafik Reaction Forces

Persamaan

class Trusses_HW

parameter Integer N=8; //Global matrice = 2*points connected
parameter Real A=0.001; //Area m2
parameter Real E=200e9; //Pa
Real G[N,N]; //global
Real Ginitial[N,N]; //global
Real Sol[N]; //global dispplacement
Real X[N]={0,0,-1035.2762,-3863.7033,0,0,-1035.2762,-3863.7033};
Real R[N]; //global reaction force
Real SolMat[N,1];
Real XMat[N,1];

//boundary condition
Integer b1=1;
Integer b2=3;

//truss 1
parameter Real X1=0; //degree between truss
Real k1=A*E/1;
Real K1[4,4]; //stiffness matrice
Integer p1a=1;
Integer p1b=2;
Real G1[N,N];

//truss 2
parameter Real X2=0; //degree between truss
Real k2=A*E/1;
Real K2[4,4]; //stiffness matrice
Integer p2a=2;
Integer p2b=3;
Real G2[N,N];

//truss 3
parameter Real X3=90; //degree between truss
Real k3=A*E/1.25;
Real K3[4,4]; //stiffness matrice
Integer p3a=2;
Integer p3b=4;
Real G3[N,N];

//truss 4
parameter Real X4=90+38.6598; //degree between truss
Real k4=A*E/1.6;
Real K4[4,4]; //stiffness matrice
Integer p4a=1;
Integer p4b=4;
Real G4[N,N];

//truss 5
parameter Real X5=90-38.6598; //degree between truss
Real k5=A*E/1.6;
Real K5[4,4]; //stiffness matrice
Integer p5a=3;
Integer p5b=4;
Real G5[N,N];

/*
for each truss, please ensure pXa is lower then pXb (X represents truss element number)
*/

algorithm

//creating global matrice
K1:=Stiffness_Matrices(X1);
G1:=k1*Local_Global(K1,N,p1a,p1b);

K2:=Stiffness_Matrices(X2);
G2:=k2*Local_Global(K2,N,p2a,p2b);

K3:=Stiffness_Matrices(X3);
G3:=k3*Local_Global(K3,N,p3a,p3b);

K4:=Stiffness_Matrices(X4);
G4:=k4*Local_Global(K4,N,p4a,p4b);

K5:=Stiffness_Matrices(X5);
G5:=k5*Local_Global(K5,N,p5a,p5b);

G:=G1+G2+G3+G4+G5;
Ginitial:=G;

//implementing boundary condition
for i in 1:N loop
 G[2*b1-1,i]:=0;
 G[2*b1,i]:=0;
 G[2*b2-1,i]:=0;
 G[2*b2,i]:=0;
end for;

G[2*b1-1,2*b1-1]:=1;
G[2*b1,2*b1]:=1;
G[2*b2-1,2*b2-1]:=1;
G[2*b2,2*b2]:=1;

//solving displacement
Sol:=Gauss_Jordan(N,G,X);

//solving reaction force
SolMat:=matrix(Sol);
XMat:=matrix(X);
R:=Reaction_Trusses(N,Ginitial,SolMat,XMat);

end Trusses_HW;


Fungsi Panggil

Matrice Transformation

function Stiffness_Matrices
input Real A;
Real Y;
output Real X[4,4];
Real float_error = 10e-10;

final constant Real pi=2*Modelica.Math.asin(1.0);

algorithm

Y:=A/180*pi;
    
X:=[(Modelica.Math.cos(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y),-(Modelica.Math.cos(Y))^2,-Modelica.Math.cos(Y)*Modelica.Math.sin(Y);

Modelica.Math.cos(Y)*Modelica.Math.sin(Y),(Modelica.Math.sin(Y))^2,-Modelica.Math.cos(Y)*Modelica.Math.sin(Y),-(Modelica.Math.sin(Y))^2;

-(Modelica.Math.cos(Y))^2,-Modelica.Math.cos(Y)*Modelica.Math.sin(Y),(Modelica.Math.cos(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y);

-Modelica.Math.cos(Y)*Modelica.Math.sin(Y),-(Modelica.Math.sin(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y),(Modelica.Math.sin(Y))^2];

for i in 1:4 loop
 for j in 1:4 loop
   if abs(X[i,j]) <= float_error then
     X[i,j] := 0;
   end if;
 end for;
end for;

end Stiffness_Matrices;


Global Element Matrice

function Local_Global
input Real Y[4,4];
input Integer B;
input Integer p1;
input Integer p2;
output Real G[B,B];

algorithm

for i in 1:B loop
 for j in 1:B loop
     G[i,j]:=0;
 end for;
end for;

G[2*p1,2*p1]:=Y[2,2];
G[2*p1-1,2*p1-1]:=Y[1,1];
G[2*p1,2*p1-1]:=Y[2,1];
G[2*p1-1,2*p1]:=Y[1,2];

G[2*p2,2*p2]:=Y[4,4];
G[2*p2-1,2*p2-1]:=Y[3,3];
G[2*p2,2*p2-1]:=Y[4,3];
G[2*p2-1,2*p2]:=Y[3,4];

G[2*p2,2*p1]:=Y[4,2];
G[2*p2-1,2*p1-1]:=Y[3,1];
G[2*p2,2*p1-1]:=Y[4,1];
G[2*p2-1,2*p1]:=Y[3,2];

G[2*p1,2*p2]:=Y[2,4];
G[2*p1-1,2*p2-1]:=Y[1,3];
G[2*p1,2*p2-1]:=Y[2,3];
G[2*p1-1,2*p2]:=Y[1,4];

end Local_Global;


Gauss_Jordan

function Gauss_Jordan
input Integer N;
input Real A[N,N];
input Real B[N];
output Real X[N];
Real float_error = 10e-10;
algorithm
X:=Modelica.Math.Matrices.solve(A,B);
for i in 1:N loop
  if abs(X[i]) <= float_error then
    X[i] := 0;
  end if;
end for;
end Gauss_Jordan;


Reaction Matrice Equation

function Reaction_Trusses
input Integer N;
input Real A[N,N];
input Real B[N,1];
input Real C[N,1];
Real X[N,1];
output Real Sol[N];
Real float_error = 10e-10;

algorithm
X:=A*B-C;

for i in 1:N loop
 if abs(X[i,1]) <= float_error then
   X[i,1] := 0;
 end if;
end for;

for i in 1:N loop
 Sol[i]:=X[i,1];
end for;

end Reaction_Trusses;

pertemuan [12-2-2020]

QUIZ FLOWCHART DAN KELAS DIMENSI

Flowchart.jpeg
Penjelasan Flowchart.jpeg
Class Diagram.jpeg


Tugas 4

Mebuat flow chart diagram class dan coding open modelica

Tr 1.jpeg
1.jpeg
2.jpeg


Dibawah ini adalah coding untuk soal 3d trusses berdasarkan dari saudara Ahmad Mohammad Fahmi dari kelas metode numerik 03 :

Membuat Kekakuan elemen

KE 3D 1.png
KE 3D 2.png


Membuat Kekakuan Global

KG 3D 1.png
KG 3D 2.png


Membuat Kekakuan Global Gabungan (hasil penjumlahan kekakuan global per elemen)

KGG 3D.png
KGB 3D.png


Membuat Gauss Jordan

Gauss Jordan 3D.png


Membuat Gaya Reaksi

Gaya Reaksi 3D.png


Membuat Kelas Pemanggil

Kelas 3D.png

Setelah itu didapatlah hasil untuk U (defleksi) dan R (gaya reaksi)

U 3D.png R 3D.png

video penjelasan

12/16/2020

aplikasi metode numerik dalam kasus optimisasi, pada kelas kami diajarkan mengenai optimasi menggunakan modelica yang dijelaskan oleh Bu Chandra dengan menggunakan bracket function. sistem persamaannya sebagai berikut;

FungsiObjek.mo

function FungsiObjek
 
input Real x;
output Real y;

algorithm

y:= 2*Modelica.Math.sin(x)-x^2/10;

end FungsiObjek; 

Dimana fungsi ini akan menjadi sebuah fungsi yang ada dipanggil dengan file jenis model.

BracketOptimal.mo
model BracketOptimal

parameter Integer n = 8;
Real x1[n];
Real x2[n];
Real xup;
Real xlow;
Real f1[n];
Real f2[n];
Real xopt;
Real yopt;
Real d;

algorithm
xup := 4;
xlow := 0;

for i in 1:n loop
  d:=((5^(1/2)-1)/2) * (xup-xlow);
  x1[i] := xlow+d;
  x2[i] := xup-d;
  f1[i] := FungsiObjek(x1[i]);
  f2[i] := FungsiObjek(x2[i]);
  
  if f1[i]>f2[i] then
    xup := xup;
    xlow := x2[i];
    xopt := xup;
    yopt := f1[i];
    else
      xlow :=xlow;
      xup := x1[i];
      xopt := xup;
  end if;
end for;
 

end BracketOptimal;

Serta File kelas ini akan menjadi fungsi model yang memanggil

Tugas Besar Metnum "Melakukan Optimasi Rangka Sederhana"

-Tujuan: Mendesain Rangka yang reliable dangan cost yang optimal (muraahh)

-Geometri dan Load (liat WA)

-Variabel bebas/factor: (ini kesimpulan) a. Harga b. Material (Elastisitas properti) c. Area Cross Section Truss (L profile/truss siku)

-Membentuk kurva efisiensi harga dengan Curve Fitting