Difference between revisions of "Valve-Hans Thiery T"
Hans.thiery (talk | contribs) (→Tugas 04 : Analisa Permodelan Sistem Fluida pada Open Modelica (Pembangkit)) |
Hans.thiery (talk | contribs) (→Tugas 04 : Analisa Permodelan Sistem Fluida pada Open Modelica (Pembangkit)) |
||
Line 158: | Line 158: | ||
4. Jelaskan flow line (jalur koneksi) masing-masing yang diberi warna hitam, merah, dan biru sesuai dengan interkoneksi yang diberikan dalam diagram tersebut. | 4. Jelaskan flow line (jalur koneksi) masing-masing yang diberi warna hitam, merah, dan biru sesuai dengan interkoneksi yang diberikan dalam diagram tersebut. | ||
− | [[File:Hans_Sisflu_Tugas4_Model.png | | + | [[File:Hans_Sisflu_Tugas4_Model.png | 800x800]] |
+ | |||
Merupakan sistem fluida pembangkit bermodel ThermoSysPro Combined Cycle Power Plant untuk mensimulasikan variasi beban dari 100% sampai 50% sepanjang 800 detik, dengan spesifikasi : | Merupakan sistem fluida pembangkit bermodel ThermoSysPro Combined Cycle Power Plant untuk mensimulasikan variasi beban dari 100% sampai 50% sepanjang 800 detik, dengan spesifikasi : | ||
Line 173: | Line 174: | ||
Secara termodinamik, model tersebut secara skema mirip dengan model ''Combined Cycle Power Plant'' pada umumnya sebagai berikut. | Secara termodinamik, model tersebut secara skema mirip dengan model ''Combined Cycle Power Plant'' pada umumnya sebagai berikut. | ||
− | [[File:Hans_Sisflu_Tugas4_Skema1.jpg | | + | [[File:Hans_Sisflu_Tugas4_Skema1.jpg | 800x800]] |
Pada model tersebut, sistem-sistem bagian yang bekerja secara terintegrasi adalah: | Pada model tersebut, sistem-sistem bagian yang bekerja secara terintegrasi adalah: | ||
Line 180: | Line 181: | ||
Komponen-komponen yang membangun bagian turbin gas adalah : | Komponen-komponen yang membangun bagian turbin gas adalah : | ||
• Kompresor udara : untuk menghisap udara dari luar untuk menaikan tekanan udara yang di alirkan menuju ruang bakar (combustion chamber) | • Kompresor udara : untuk menghisap udara dari luar untuk menaikan tekanan udara yang di alirkan menuju ruang bakar (combustion chamber) | ||
− | • Ruang bakar : tempat / ruang pembakaran bahan bakar oleh udara untuk menciptakan suatu energi yaitu udara panas yang dialirkan menuju turbin, dimana pada alat ini tekanan | + | • Ruang bakar : tempat / ruang pembakaran bahan bakar oleh udara untuk menciptakan suatu energi yaitu udara panas yang dialirkan menuju turbin, dimana pada alat ini tekanan dianggap konstan (Isobarik). |
− | dianggap konstan (Isobarik). | ||
• Turbin : untuk memutar generator untuk menghasilkan suatu energi. | • Turbin : untuk memutar generator untuk menghasilkan suatu energi. | ||
Pada bagian ini, turbin berputar akibat panas yang dihasilkan pada ruang bakar yang di aliri oleh nozzle menuju turbin. Panas yang ada di turbin gas dialirkan menuju Heat recovery Steam generator(HRSG). Berlaku siklus Rankine pada bagian ini yang dinotasikan pada diagram T-S berikut. | Pada bagian ini, turbin berputar akibat panas yang dihasilkan pada ruang bakar yang di aliri oleh nozzle menuju turbin. Panas yang ada di turbin gas dialirkan menuju Heat recovery Steam generator(HRSG). Berlaku siklus Rankine pada bagian ini yang dinotasikan pada diagram T-S berikut. | ||
− | [[File:Hans_Sisflu_Tugas4_RankineTS.jpg | | + | [[File:Hans_Sisflu_Tugas4_RankineTS.jpg | 800x800]] |
b. Heat Recovery Steam Generator (HRSG) | b. Heat Recovery Steam Generator (HRSG) | ||
Line 193: | Line 193: | ||
• Pada turbin,yang dimana turbin 2 bertugas memutar generator untuk menghasilkan suatu energi | • Pada turbin,yang dimana turbin 2 bertugas memutar generator untuk menghasilkan suatu energi | ||
• Aliran steam ini kemudian melewati Steam Turbine, sehingga membuat Steam Turbine berputar dan menggerakkan generator drive shaft. Generator drive shaft ini kemudian mengubah sisa energi buangan Hasil buangan dari turbin dialirkan menuju kondesor untuk merubah sifat dari uap menjadi cair agar dapat didorong oleh pompa menuju HRSG untuk dipanaskan Kembali. Berlaku siklus Bryton pada bagian ini yang dapat dinotasikan pada diagram T-S berikut. | • Aliran steam ini kemudian melewati Steam Turbine, sehingga membuat Steam Turbine berputar dan menggerakkan generator drive shaft. Generator drive shaft ini kemudian mengubah sisa energi buangan Hasil buangan dari turbin dialirkan menuju kondesor untuk merubah sifat dari uap menjadi cair agar dapat didorong oleh pompa menuju HRSG untuk dipanaskan Kembali. Berlaku siklus Bryton pada bagian ini yang dapat dinotasikan pada diagram T-S berikut. | ||
− | [[File:Hans_Sisflu_Tugas4_BrytonTS.jpg | | + | [[File:Hans_Sisflu_Tugas4_BrytonTS.jpg | 800x800]] |
'''2. Lakukan identifikasi komponen-komponen utama pada sistem serta berilah deskripsi fungsi kerjanya dalam sistem dan penjelasan analisis parameter yang digunakan''' | '''2. Lakukan identifikasi komponen-komponen utama pada sistem serta berilah deskripsi fungsi kerjanya dalam sistem dan penjelasan analisis parameter yang digunakan''' | ||
Line 212: | Line 212: | ||
b. Model turbin gas: | b. Model turbin gas: | ||
Model ini terdiri dari 1 kompresor (Compressor), 1 turbin gas (Gas Turbine), 1 ruang bakar (Combustion Chamber), dan 1 kelembaban udara (Air Humidity), dengan penamaan sebagai berikut | Model ini terdiri dari 1 kompresor (Compressor), 1 turbin gas (Gas Turbine), 1 ruang bakar (Combustion Chamber), dan 1 kelembaban udara (Air Humidity), dengan penamaan sebagai berikut | ||
− | [[File:Hans_Sisflu_Tugas4_Tabel2.png | | + | [[File:Hans_Sisflu_Tugas4_Tabel2.png | 800x800]] |
'''3. Medium fluida kerja apa saja yang terjadi dalam proses siklus tersebut, dan bagaimanakah proses analisis perhitungan dalam pemodelan.''' | '''3. Medium fluida kerja apa saja yang terjadi dalam proses siklus tersebut, dan bagaimanakah proses analisis perhitungan dalam pemodelan.''' |
Revision as of 13:39, 10 December 2020
Nama : Hans Thiery T
NPM : 1806233341
Mata Kuliah : Sistem Fluida - 03 (TA 2020-2021 Ganjil)
Contents
- 1 Pertemuan 01 (Kamis, 12 November 2020) : Simulasi Gate Valve
- 2 Tugas 01 : Simulasi Valve
- 3 Pertemuan 02 (Kamis, 19 November 2020) :
- 4 Tugas 02 : Mempelajari Open Modelica dengan library (Heat Exchanger dan Room CO2)
- 5 Pertemuan 03 (Kamis, 26 November 2020) : Permodelan Sistem Fluida denagn Open Modelica
- 6 Tugas 03 : Analisa Permodelan Sistem dengan Tools Open Modelica
- 7 Pertemuan 04 (Kamis, 03 Desember 2020) :
- 8 Tugas 04 : Analisa Permodelan Sistem Fluida pada Open Modelica (Pembangkit)
Pertemuan 01 (Kamis, 12 November 2020) : Simulasi Gate Valve
Pada perkuliahan pertama setelah Ujian Tengah Semester yang diisi oleh Pak DAI, kami melakukan simulasi gate valve pada CFDSOF untuk mencari pressure drop, sesuai dengan video-video tutorial yang dibagi menjadi tiga bagian melalui Youtube : CFDSOF Tutorial - Simulasi Gate Valve (Part 1); CFDSOF Tutorial - Simulasi Gate Valve (Part 2); CFDSOF Tutorial - Simulasi Gate Valve (Part 3) sesuai part Gate Valve
Dengan ini didapatkan tekanan pada inlet sebesar 0.0010025 dan tekanan pada outlet sebesar 0.000286522 dan pressure drop dengan selilisih pressure inlet dan outlet sebesar 0.000715978.
Tugas 01 : Simulasi Valve
Pertemuan 02 (Kamis, 19 November 2020) :
Pada perkuliahan ini, kami mempelajari mengenai segitiga kecepatan, fungsi dari simulasi CFD, tiga metode analisis sistem fluida, perbedaan turbin impuls dan reaksi, dan pengantar Open Modelica.
- Segitiga kecepatan yang terdapat sistem fluida yaitu segitiga yang menunjukkan arah dari komponen vektor-vektor kecepatan yang ada pada sistem tersebut.
- Fungsi simulasi CFD adalah untuk mempelajari, menyelesaikan, memvalidasi, dan mengevaluasi hasil perhitungan secara teoritis, dalam hal ini mempermudah cara / tahapan dalam memvisualisasikan bentuk aliran yang terjadi dalam sebuah sistem fluida.
- Tiga metode analisa sistem fluida: a. Eksperimen: menghasilkan hasil yang aktual (real time), namun cenderung lebih lama dan mahal. b. Teori: memverifikasi data eksperimen pada kondisi ideal untuk menentukan keberhasilan eksperimen. c. Numerik (CFD): gabungan dari metode eksperimen dan teori, biasanya digunakan pada perhitungan sangat kompleks dan tidak bisa diselesaikan pada metode teori, tanpa memerlukan effort dan resources yang sangat banyak, namun tidak seakurat eksperimen dan tidak seideal teori. Ketiga metode tersebut bekerja saling melengkapi.
- Perbedaan turbin impuls dan turbin reaksi a. Turbin Impuls : mengubah energi fluida (tekanan) menjadi kerja dengan mengubah arah aliran fluida ketika terkena bilah rotor memanfaatkan head yang tinggi untuk menghasilkan perubahan momentum dengan bilah berbentuk mangkuk. b. Turbin Reaksi : mengubah energi fluida menjadi kerja dengan reaksi pada bilah rotor,yang langsung mengalami perubahan momentum dengan tekanan atas kecil sementara tekanan bawah besar.
- Pengantar Open Modelica Open Modelica adalah perangkat lunak untuk melakukan simulasi suatu sistem dengan pemodelan dan pemograman. Pada pengantar, diberikan contoh aplikasi sistem fluida empty tank yang terdapat pada model library Open Modelica. Hasil simulasi menunjukkan perubahan volume tangki 1 dan 2 karena perbedaan ketinggian tangki dan pada grafik volume tangki 1 menunjukkan penurunan, sementara grafik volume tangki 2 menunjukkan kenaikan.
Tugas 02 : Mempelajari Open Modelica dengan library (Heat Exchanger dan Room CO2)
Contoh 01 : Model akumulasi kontrol kadar CO2 dalam suatu wadah / ruangan
Pada model ini, dapat disimulasikan wadah / ruangan yang diisi dengan CO2 dari suatu sumber dengan alat ukur aliran masuk CO2, dengan volume CO2 awal 100m3, dan pengeluaran yang dilengkapi dengan alat ukur aliran keluar CO2.
Pada coding di atas dimasukkan spesifikasi awal, seperti temperatur, tekanan, dan lainnya. Lalu dilakukan simulasi dengan rumus sesuai dengan kontrol yang ada, sehingga menghasilkan pengukuran dalam grafik perpindahan kalor dan perubahan suhu dalam proses tersebut dalam satuan detik, Joule, dan derajat Celcius.
Pada hasil simulasi didapatkan properties awal yang telah diinput, lalu kedua grafik perubahan temperatur selama proses tersebut dan perpindahan kalor yang terjadi pada sistem yang disimulasikan. Hal ini dapat membuktikan akumulasi CO2 dapat mengakibatkan perubahan temperatur dan perpindahan kalor.
Link nya : https://drive.google.com/file/d/1FRW-RmW6ZMevW9YeeFzYIk5FnUXoG3GQ/view?usp=sharing
Contoh 02 : Heat Exchanger
Pertemuan 03 (Kamis, 26 November 2020) : Permodelan Sistem Fluida denagn Open Modelica
Pada perkuliahan kali ini, kami melakukan praktik simulasi Pemodelan Sistem Fluida bersama dengan pak Haryo. Namun sebelum beranjak ke praktek, Pak Dai dan kami berdiskusi mengenai apa itu Pemodelan Sistem Fluida itu sendiri. Menurut saya pribadi, pemodelan sistem fluida adalah memodelkan suatu kasus sistem fluida yang nyata dalam bentuk persamaan matematika agar dapat diselesaikan baik secara analitik maupun numerik.
Kalau menurut pak Dai, Penjelasan mengenai pemodelan sistem fluida dimulai dari filosofi pemodelan, yaitu sebuah usaha untuk mempelajari sebuah sistem aktual melalui sistem-sistem yang disimplifikasi. Artinya sebuah model adalah sistem yang disederhanakan yang berusaha merepresentasikan model yang sebenarnya. Untuk melakukan studi sistem aktual, tidak mungkin menganalisa langsung secara aktual. Dalam arti lain, sebuah pemodelan adalah sebuah usaha untuk membuat replika dari suatu sistem aktual. Pemodelan tidak akan sama dengan sistem aktual. Untuk dapat melakukan pemodelan Sistem Fluida, diperlukan pengetahuan basic mengenai Sistem Fluida
Lalu Pak Haryo menerangkan cara kerja OpenModelica
Tugas 03 : Analisa Permodelan Sistem dengan Tools Open Modelica
Analisa Permodelan Sistem dengan Tools Open Modelica dengan tahapan-tahapan : 1. Deskripsi/uraian fisik berdasarkan bagan yang ada 2. Prosedur analisa pemodelan 3. Analisa dan Interpretasi Hasil Pemodelan 4. Catatan konsep utama hukum fisika yang diimplementasikan dalam pemodelan 5. Berikan hasil-hasil simulasi parameter untuk mendukung kesimpulan yang diperoleh
Sesuai model sistem fluida :
Analisa pada Gambar 1 : 1. Deskripsi/uraian fisik berdasarkan bagan : a. Tank : tempat menyimpan air b. Pump : alat memompa air, meningkatkan aliran dan tekanan menuju suatu tempat c. Sensor_m_flow : alat ukur aliran air d. Heater : pemanas air e. Sensor_T_forward : alat ukur temperatur setelah keluar dari pemanas f. Pipe : pipa jalur mengalirnya air g. Valve : katup yang menghambat dan mengalirkan air h. Radiator : pendingin / memindahkan kalor antar fluida i. Wall : dinding penyangga j. Sensor_T_return : alat ukur temperatur pada jalur pengembalian air ke tank Model dirangkai sedemikian rupa dengan aliran air sebagai media transfer kalor (sebagai pendingin) dari mesin pemanas dengan tangki, pompa, pemanas, katup, dan radiator sebagai komponen utama. 2. Prosedur analisa pemodelan a. Analisis & pahami setiap komponen b. Analisis & pahami Alur jalannya aliran air c. Analisis & pahami bagian pertukaran kalor d. Analisis secara keseluruhan sistem 3. Analisa dan Interpretasi Hasil Pemodelan 4. Catatan konsep utama hukum fisika yang diimplementasikan dalam pemodelan Hukum konservasi energi, massa, momentum & Hukum Termodinamika 1 5. Berikan hasil-hasil simulasi parameter untuk mendukung kesimpulan yang diperoleh Jika heater berjalan dengan baik sesuai dengan rancangan, diperkirakan akan memberikan hasil kerja yang optimal, untuk fungsi mendinginkan atau memindahkan kalor panas dari mesin pemanas.
Analisa pada Gambar 2 : 1. Deskripsi/uraian fisik berdasarkan bagan : a. Tank1 : tempat menyimpan air b. Pipe1 : pipa jalur mengalirnya air menghubungkan tank1 dengan tank lainnya c. Tank2 : tempat menyimpan air d. Pipe2 : pipa jalur mengalirnya air menghubungkan tank2 dengan tank lainnya e. Tank3 : tempat menyimpan air f. Pipe3 : pipa jalur mengalirnya air menghubungkan tank3 dengan tank lainnya 2. Prosedur analisa pemodelan a. Analisis & pahami setiap komponen b. Analisis & pahami Alur jalannya aliran air c. Analisis secara keseluruhan sistem 3. Analisa dan Interpretasi Hasil Pemodelan Asumsi fluida pada model tersebut adalah sama. Terlihat ketinggian tangki ketiga lebih rendah. Pada kondisi awal, ketiga tangki disambung oleh tiga pipa memiliki ketinggian fluida yang sama sesuai ukuran tangki, sehingga terdapat ketidakseimbangan ketinggian air pada ketiga tangki secara keseluruhan, maka terdapat perbedaan tekanan pada tiap tangki. Tangki dengan ketingian air lebih tinggi (tangki 1 & 2) sesuai hukum Pascal memiliki tekanan yang lebih tinggi, sehingga fluida tersebut pada ketinggian lebih tinggi akan berpindah melalui pipa menuju tangki yang lebih rendah (tangki 3) ketinggian fluidanya sampai ketinggian yang sama pada ketiga tangki (kesetimbangan). Dari ketinggian fluida secara keseluruhan yang sama, sesuai ukuran tangki 1 & 2 akan lebih rendah, sehingga volume pada tangki 1 & 2 akan lebih rendah daripada tangki 3. (Volume tangki 3 lebih besar) 4. Catatan konsep utama hukum fisika yang diimplementasikan dalam pemodelan Hukum Pascal, Teori persamaan Pressure drop (berdasar dari Hukum II Newton), Mass balance equation 5. Berikan hasil-hasil simulasi parameter untuk mendukung kesimpulan yang diperoleh Dari simulasi ini, dapat dibuktikan hukum Pascal "Tekanan yang diberikan zat cair dalam ruang tertutup diteruskan ke segala arah dengan sama besar" dan pada sistem tersebut kesetimbangan dicapai pada sekitar detik ke-130.
Pertemuan 04 (Kamis, 03 Desember 2020) :
Pada perkuliahan kali ini, kami melakukan pembelajaran dengan mengikuti tutorial dari Pak Hariyo mengenai memahami dan menganalisis model-model sistem fluida yang ada pada Open Modelica.
Tugas 04 : Analisa Permodelan Sistem Fluida pada Open Modelica (Pembangkit)
Pada tugas ini, kami diminta untuk menjawab beberapa pertanyaan berikut sesuai dengan model Pembangkit (ThermoSysPro.Examples.CombinedCyclePowerPlant.CombinedCycle_Load_100_50, gambar terlampir)
1. Bagaimanakah analisa termodinamika (konservasi massa dan energi) pada sistem tersebut, buat skematik analisisnya. 2. Lakukan identifikasi komponen-komponen utama pada sistem serta berilah deskripsi fungsi kerjanya dalam sistem dan penjelasan analisis parameter yang digunakan. 3. Medium fluida kerja apa saja yang terjadi dalam proses siklus tersebut, dan bagaimanakah proses analisis perhitungan dalam pemodelan. 4. Jelaskan flow line (jalur koneksi) masing-masing yang diberi warna hitam, merah, dan biru sesuai dengan interkoneksi yang diberikan dalam diagram tersebut.
Merupakan sistem fluida pembangkit bermodel ThermoSysPro Combined Cycle Power Plant untuk mensimulasikan variasi beban dari 100% sampai 50% sepanjang 800 detik, dengan spesifikasi :
Gas Turbine (GT): Nominal power: 2*226 MW, Steam Generator (HRSG): Thermal power: 2*360 MW, Steam Turbine: Nominal power: 277 MW, Condenser: Thermal power: 428 MW. Outlet water temperature: 305 K Vacuum pressure: 6100 Pa.
1. Analisa termodinamika (konservasi massa dan energi) pada sistem tersebut dan skematik analisisnya.
Secara termodinamik, model tersebut secara skema mirip dengan model Combined Cycle Power Plant pada umumnya sebagai berikut.
Pada model tersebut, sistem-sistem bagian yang bekerja secara terintegrasi adalah:
a. Bagian Turbin Gas Komponen-komponen yang membangun bagian turbin gas adalah : • Kompresor udara : untuk menghisap udara dari luar untuk menaikan tekanan udara yang di alirkan menuju ruang bakar (combustion chamber) • Ruang bakar : tempat / ruang pembakaran bahan bakar oleh udara untuk menciptakan suatu energi yaitu udara panas yang dialirkan menuju turbin, dimana pada alat ini tekanan dianggap konstan (Isobarik). • Turbin : untuk memutar generator untuk menghasilkan suatu energi. Pada bagian ini, turbin berputar akibat panas yang dihasilkan pada ruang bakar yang di aliri oleh nozzle menuju turbin. Panas yang ada di turbin gas dialirkan menuju Heat recovery Steam generator(HRSG). Berlaku siklus Rankine pada bagian ini yang dinotasikan pada diagram T-S berikut. 800x800
b. Heat Recovery Steam Generator (HRSG) • Heat Recovery Steam Generator menangkap gas buangan dari turbin gas dan turbin uap untuk dipanaskan kembali • HRSG menangkap gas buangan dari Gas Turbine yang jika tidak dipasang, dapat keluar melalui saluran pembuangan.HRSG berguna untuk memanaskan Kembali uap pembuangan dari gas turbine untuk dialiri ke turbin
c. Turbin uap • Pada turbin,yang dimana turbin 2 bertugas memutar generator untuk menghasilkan suatu energi • Aliran steam ini kemudian melewati Steam Turbine, sehingga membuat Steam Turbine berputar dan menggerakkan generator drive shaft. Generator drive shaft ini kemudian mengubah sisa energi buangan Hasil buangan dari turbin dialirkan menuju kondesor untuk merubah sifat dari uap menjadi cair agar dapat didorong oleh pompa menuju HRSG untuk dipanaskan Kembali. Berlaku siklus Bryton pada bagian ini yang dapat dinotasikan pada diagram T-S berikut. 800x800
2. Lakukan identifikasi komponen-komponen utama pada sistem serta berilah deskripsi fungsi kerjanya dalam sistem dan penjelasan analisis parameter yang digunakan Model ini dibagi atas dua bagian utama : siklus air/uap dan sistem gas buang, dimana dapat diasumsikan sebagai Heat Recover Steam Generator (HRSG) dan Gas Turbine (GT) / turbin gas.
a. Model Heat Recover Steam Generator (HRSG) Model ini terdiri dari 16 penukar kalor (3 evaporator, 6 economizers, 7 super-heaters), 3 loop evaporasi (tekanan rendah, menengah, dan tinggi), 3 drum, 3 tahap turbin uap (HP, IP, dan LP), 3 pompa, 9 katup, beberapa penurunan tekanan, beberapa mixer, beberapa kolektor, 1 kondensor, 1 generator, beberapa sensor, sumber, bak cuci dan sistem kontrol terbatas pada kontrol level drum. Fitur penting dari model ini adalah siklus termodinamika yang sepenuhnya tertutup melalui kondensor. Hal ini sulit untuk dicapai, karena kesulitan dalam menemukan keseimbangan numerik dari loop tertutup besar. Daftar komponen yang digunakan untuk pengembangan model HRSG disajikan pada tabel berikut. Penukar kalor / Heat Exchanger : Berdasarkan prinsip kekekalan massa, momentum, dan energy, dapat diartikan dalam bentuk:perpindahan kalor transverse, akumulasi massa, Inersia termal, Gravitasi, dan Penurunan tekanan dalam laju aliran setempat. Kondenser : Berdasarkan prinsip kekekalan massa dan energi untuk air dan uap, dapat diartikan dalam bentuk: Pertukaran panas antara uap / air dan dinding, dan Pertukaran panas antara dinding luar dan media luar. Turbin uap : Berdasarkan hukum efisiensi isentropik Pompa : Berdasarkan karakter kurva pompa Pressure drop pada pipa : Proporsional dengan tekanan dinamik dan statik Mixer/splitter : Based on the mass and energy balances for the fluid.
b. Model turbin gas: Model ini terdiri dari 1 kompresor (Compressor), 1 turbin gas (Gas Turbine), 1 ruang bakar (Combustion Chamber), dan 1 kelembaban udara (Air Humidity), dengan penamaan sebagai berikut
3. Medium fluida kerja apa saja yang terjadi dalam proses siklus tersebut, dan bagaimanakah proses analisis perhitungan dalam pemodelan.
- Pada model ini, medium fluida kerja yang terjadi pada proses siklus adalah fluida dengan fase cair dan gas, dan masing-masing bagian dapat dibagi sebagai berikut • Menghasilkan kerja : turbin gas & turbin uap (W+) • Membutuhkan kerja : pompa sentrifugal & kompresor (W-) • Proses adiabatic (tidak ada perpindahan kalor dari lingkungan ataupun sebaliknya) : kompresor, pompa, turbin, dan HRSG - Pada Analisa perhitungannya menggunakan hukum konservasi energi dan konservasi massa - Secara idealnya, proses ini berjalan pada kondisi steady state dan energi kinetic & potensial dapat diabaikan
4. Deskripsi flow line (jalur koneksi) masing-masing yang diberi warna hitam, merah, dan biru sesuai dengan interkoneksi yang diberikan dalam diagram. - Jalur hitam : alur gas yang terjadi pada sistem, yaitu jalur suplai udara (inlet) dan jalur pembuangan (exhaust) pada turbin gas - Jalur merah : alur uap temperatur tinggi pada system, yaitu Jalur melalui Heat Exchanger, dan jalur suplai uap untuk menggerakkan turbin uap. - Jalur biru: alur uap temperatur rendah pada system, yaitu jalur pada proses Heat Exchanger terutama pada bagian economizer, dan tangki penyimpanan.