Difference between revisions of "Valve-Hans Thiery T"
Hans.thiery (talk | contribs) (→Tugas 03 : Analisa Permodelan Sistem dengan Tools Open Modelica) |
Hans.thiery (talk | contribs) (→Pertemuan 03 (Kamis, 26 November 2020) : Permodelan Sistem Fluida denagn Open Modelica) |
||
Line 77: | Line 77: | ||
==Pertemuan 03 (Kamis, 26 November 2020) : Permodelan Sistem Fluida denagn Open Modelica== | ==Pertemuan 03 (Kamis, 26 November 2020) : Permodelan Sistem Fluida denagn Open Modelica== | ||
+ | Pada perkuliahan kali ini, kami melakukan praktik simulasi Pemodelan Sistem Fluida bersama dengan pak Haryo. Namun sebelum beranjak ke praktek, Pak Dai dan kami berdiskusi mengenai apa itu Pemodelan Sistem Fluida itu sendiri. Menurut saya pribadi, pemodelan sistem fluida adalah memodelkan suatu kasus sistem fluida yang nyata dalam bentuk persamaan matematika agar dapat diselesaikan baik secara analitik maupun numerik. | ||
+ | |||
+ | Kalau menurut pak Dai, Penjelasan mengenai pemodelan sistem fluida dimulai dari filosofi pemodelan, yaitu sebuah usaha untuk mempelajari sebuah sistem aktual melalui sistem-sistem yang disimplifikasi. Artinya sebuah model adalah sistem yang disederhanakan yang berusaha merepresentasikan model yang sebenarnya. Untuk melakukan studi sistem aktual, tidak mungkin menganalisa langsung secara aktual. Dalam arti lain, sebuah pemodelan adalah sebuah usaha untuk membuat replika dari suatu sistem aktual. Pemodelan tidak akan sama dengan sistem aktual. Untuk dapat melakukan pemodelan Sistem Fluida, diperlukan pengetahuan basic mengenai Sistem Fluida | ||
+ | |||
+ | Lalu Pak Haryo menerangkan cara kerja OpenModelica | ||
==Tugas 03 : Analisa Permodelan Sistem dengan Tools Open Modelica== | ==Tugas 03 : Analisa Permodelan Sistem dengan Tools Open Modelica== |
Revision as of 12:04, 3 December 2020
Nama : Hans Thiery T
NPM : 1806233341
Mata Kuliah : Sistem Fluida - 03 (TA 2020-2021 Ganjil)
Contents
- 1 Pertemuan 01 (Kamis, 12 November 2020) : Simulasi Gate Valve
- 2 Tugas 01 : Simulasi Valve
- 3 Pertemuan 02 (Kamis, 19 November 2020) :
- 4 Tugas 02 : Mempelajari Open Modelica dengan library (Heat Exchanger dan Room CO2)
- 5 Pertemuan 03 (Kamis, 26 November 2020) : Permodelan Sistem Fluida denagn Open Modelica
- 6 Tugas 03 : Analisa Permodelan Sistem dengan Tools Open Modelica
Pertemuan 01 (Kamis, 12 November 2020) : Simulasi Gate Valve
Pada perkuliahan pertama setelah Ujian Tengah Semester yang diisi oleh Pak DAI, kami melakukan simulasi gate valve pada CFDSOF untuk mencari pressure drop, sesuai dengan video-video tutorial yang dibagi menjadi tiga bagian melalui Youtube : CFDSOF Tutorial - Simulasi Gate Valve (Part 1); CFDSOF Tutorial - Simulasi Gate Valve (Part 2); CFDSOF Tutorial - Simulasi Gate Valve (Part 3) sesuai part Gate Valve
Dengan ini didapatkan tekanan pada inlet sebesar 0.0010025 dan tekanan pada outlet sebesar 0.000286522 dan pressure drop dengan selilisih pressure inlet dan outlet sebesar 0.000715978.
Tugas 01 : Simulasi Valve
Pertemuan 02 (Kamis, 19 November 2020) :
Pada perkuliahan ini, kami mempelajari mengenai segitiga kecepatan, fungsi dari simulasi CFD, tiga metode analisis sistem fluida, perbedaan turbin impuls dan reaksi, dan pengantar Open Modelica.
- Segitiga kecepatan yang terdapat sistem fluida yaitu segitiga yang menunjukkan arah dari komponen vektor-vektor kecepatan yang ada pada sistem tersebut.
- Fungsi simulasi CFD adalah untuk mempelajari, menyelesaikan, memvalidasi, dan mengevaluasi hasil perhitungan secara teoritis, dalam hal ini mempermudah cara / tahapan dalam memvisualisasikan bentuk aliran yang terjadi dalam sebuah sistem fluida.
- Tiga metode analisa sistem fluida: a. Eksperimen: menghasilkan hasil yang aktual (real time), namun cenderung lebih lama dan mahal. b. Teori: memverifikasi data eksperimen pada kondisi ideal untuk menentukan keberhasilan eksperimen. c. Numerik (CFD): gabungan dari metode eksperimen dan teori, biasanya digunakan pada perhitungan sangat kompleks dan tidak bisa diselesaikan pada metode teori, tanpa memerlukan effort dan resources yang sangat banyak, namun tidak seakurat eksperimen dan tidak seideal teori. Ketiga metode tersebut bekerja saling melengkapi.
- Perbedaan turbin impuls dan turbin reaksi a. Turbin Impuls : mengubah energi fluida (tekanan) menjadi kerja dengan mengubah arah aliran fluida ketika terkena bilah rotor memanfaatkan head yang tinggi untuk menghasilkan perubahan momentum dengan bilah berbentuk mangkuk. b. Turbin Reaksi : mengubah energi fluida menjadi kerja dengan reaksi pada bilah rotor,yang langsung mengalami perubahan momentum dengan tekanan atas kecil sementara tekanan bawah besar.
- Pengantar Open Modelica Open Modelica adalah perangkat lunak untuk melakukan simulasi suatu sistem dengan pemodelan dan pemograman. Pada pengantar, diberikan contoh aplikasi sistem fluida empty tank yang terdapat pada model library Open Modelica. Hasil simulasi menunjukkan perubahan volume tangki 1 dan 2 karena perbedaan ketinggian tangki dan pada grafik volume tangki 1 menunjukkan penurunan, sementara grafik volume tangki 2 menunjukkan kenaikan.
Tugas 02 : Mempelajari Open Modelica dengan library (Heat Exchanger dan Room CO2)
Contoh 01 : Model akumulasi kontrol kadar CO2 dalam suatu wadah / ruangan
Pada model ini, dapat disimulasikan wadah / ruangan yang diisi dengan CO2 dari suatu sumber dengan alat ukur aliran masuk CO2, dengan volume CO2 awal 100m3, dan pengeluaran yang dilengkapi dengan alat ukur aliran keluar CO2.
Pada coding di atas dimasukkan spesifikasi awal, seperti temperatur, tekanan, dan lainnya. Lalu dilakukan simulasi dengan rumus sesuai dengan kontrol yang ada, sehingga menghasilkan pengukuran dalam grafik perpindahan kalor dan perubahan suhu dalam proses tersebut dalam satuan detik, Joule, dan derajat Celcius.
Pada hasil simulasi didapatkan properties awal yang telah diinput, lalu kedua grafik perubahan temperatur selama proses tersebut dan perpindahan kalor yang terjadi pada sistem yang disimulasikan. Hal ini dapat membuktikan akumulasi CO2 dapat mengakibatkan perubahan temperatur dan perpindahan kalor.
Link nya : https://drive.google.com/file/d/1FRW-RmW6ZMevW9YeeFzYIk5FnUXoG3GQ/view?usp=sharing
Contoh 02 : Heat Exchanger
Pertemuan 03 (Kamis, 26 November 2020) : Permodelan Sistem Fluida denagn Open Modelica
Pada perkuliahan kali ini, kami melakukan praktik simulasi Pemodelan Sistem Fluida bersama dengan pak Haryo. Namun sebelum beranjak ke praktek, Pak Dai dan kami berdiskusi mengenai apa itu Pemodelan Sistem Fluida itu sendiri. Menurut saya pribadi, pemodelan sistem fluida adalah memodelkan suatu kasus sistem fluida yang nyata dalam bentuk persamaan matematika agar dapat diselesaikan baik secara analitik maupun numerik.
Kalau menurut pak Dai, Penjelasan mengenai pemodelan sistem fluida dimulai dari filosofi pemodelan, yaitu sebuah usaha untuk mempelajari sebuah sistem aktual melalui sistem-sistem yang disimplifikasi. Artinya sebuah model adalah sistem yang disederhanakan yang berusaha merepresentasikan model yang sebenarnya. Untuk melakukan studi sistem aktual, tidak mungkin menganalisa langsung secara aktual. Dalam arti lain, sebuah pemodelan adalah sebuah usaha untuk membuat replika dari suatu sistem aktual. Pemodelan tidak akan sama dengan sistem aktual. Untuk dapat melakukan pemodelan Sistem Fluida, diperlukan pengetahuan basic mengenai Sistem Fluida
Lalu Pak Haryo menerangkan cara kerja OpenModelica
Tugas 03 : Analisa Permodelan Sistem dengan Tools Open Modelica
Analisa Permodelan Sistem dengan Tools Open Modelica dengan tahapan-tahapan : 1. Deskripsi/uraian fisik berdasarkan bagan yang ada 2. Prosedur analisa pemodelan 3. Analisa dan Interpretasi Hasil Pemodelan 4. Catatan konsep utama hukum fisika yang diimplementasikan dalam pemodelan 5. Berikan hasil-hasil simulasi parameter untuk mendukung kesimpulan yang diperoleh
Sesuai model sistem fluida :
Analisa pada Gambar 1 : 1. Deskripsi/uraian fisik berdasarkan bagan : a. Tank : tempat menyimpan air b. Pump : alat memompa air, meningkatkan aliran dan tekanan menuju suatu tempat c. Sensor_m_flow : alat ukur aliran air d. Heater : pemanas air e. Sensor_T_forward : alat ukur temperatur setelah keluar dari pemanas f. Pipe : pipa jalur mengalirnya air g. Valve : katup yang menghambat dan mengalirkan air h. Radiator : pendingin / memindahkan kalor antar fluida i. Wall : dinding penyangga j. Sensor_T_return : alat ukur temperatur pada jalur pengembalian air ke tank Model dirangkai sedemikian rupa dengan aliran air sebagai media transfer kalor (sebagai pendingin) dari mesin pemanas dengan tangki, pompa, pemanas, katup, dan radiator sebagai komponen utama. 2. Prosedur analisa pemodelan a. Analisis & pahami setiap komponen b. Analisis & pahami Alur jalannya aliran air c. Analisis & pahami bagian pertukaran kalor d. Analisis secara keseluruhan sistem 3. Analisa dan Interpretasi Hasil Pemodelan 4. Catatan konsep utama hukum fisika yang diimplementasikan dalam pemodelan Hukum konservasi energi, massa, momentum & Hukum Termodinamika 1 5. Berikan hasil-hasil simulasi parameter untuk mendukung kesimpulan yang diperoleh Heater berjalan dengan baik sesuai dengan rancangan, memberikan hasil kerja yang optimal, untuk fungsi mendinginkan atau memindahkan kalor panas dari mesin pemanas.
Analisa pada Gambar 2 : 1. Deskripsi/uraian fisik berdasarkan bagan : a. Tank1 : tempat menyimpan air b. Pipe1 : pipa jalur mengalirnya air menghubungkan tank1 dengan tank lainnya c. Tank2 : tempat menyimpan air d. Pipe2 : pipa jalur mengalirnya air menghubungkan tank2 dengan tank lainnya e. Tank3 : tempat menyimpan air f. Pipe3 : pipa jalur mengalirnya air menghubungkan tank3 dengan tank lainnya 2. Prosedur analisa pemodelan a. Analisis & pahami setiap komponen b. Analisis & pahami Alur jalannya aliran air c. Analisis secara keseluruhan sistem 3. Analisa dan Interpretasi Hasil Pemodelan 4. Catatan konsep utama hukum fisika yang diimplementasikan dalam pemodelan Hukum Pascal, Teori persamaan Pressure drop (berdasar dari Hukum II Newton), Mass balance equation 5. Berikan hasil-hasil simulasi parameter untuk mendukung kesimpulan yang diperoleh File:Hans Sisflu T3 Plot4.png Dari simulasi ini, dapat dibuktikan hukum Pascal "Tekanan yang diberikan zat cair dalam ruang tertutup diteruskan ke segala arah dengan sama besar"/