Difference between revisions of "Pertemuan 3"

From ccitonlinewiki
Jump to: navigation, search
 
Line 8: Line 8:
 
gx + hy + iz = s\
 
gx + hy + iz = s\
 
[[File:]]
 
[[File:]]
 +
 +
----
 +
 +
== Python ==
 +
 +
 +
import numpy as np
 +
from numpy import array
 +
 +
# Mendefinisikan Matrix [A]
 +
 +
A=array([[4, -2, 1], [-2, 4, -2], [1, -2, 4]], float)
 +
 +
# Mendefinisikan Matrix [B]
 +
b = array ([[11], [-16], [ 17]], float)
 +
 +
c=array([[4, -2, 1, 11], [-2, 4, -2, -16], [1, -2, 4, 17]], float)
 +
 +
print ('Matrix dari persamaan adalah : ')
 +
print (c)
 +
#define rows  column
 +
 +
n=len(b)    #number of rows and colomn, due too the matrix that is square matrix
 +
print ('n adalah ' + str(n))
 +
 +
for k in range (0,n-1):
 +
    for i in  range (k+1,n):
 +
        if A[i,k] != 0.0 :            #perintah jika sebuah baris yang akan di eliminasi, ada bagiannya yang tidak 0 maka akan di substract dengan pivot
 +
            lam = A[i,k]/A[k,k]
 +
            A[i, k+1:n] = A[i, k+1:n] - lam*A[k, k+1:n]
 +
            b[i]=b[i] - lam*b[k]
 +
 +
x=np.zeros((3), float)
 +
for k in range (n-1,-1,-1):
 +
    x[k]=(b[k]-np.dot(A[k,k+1:n], x[k+1:n]))/A[k,k]
 +
    print (x[k])

Latest revision as of 09:51, 6 March 2019

Belajar python

Eliminasi Gauss- Jordan

Misalkan ax + by + cz = q\ dx + ey + fz = r\ gx + hy + iz = s\ [[File:]]


Python

import numpy as np from numpy import array

  1. Mendefinisikan Matrix [A]

A=array([[4, -2, 1], [-2, 4, -2], [1, -2, 4]], float)

  1. Mendefinisikan Matrix [B]

b = array ([[11], [-16], [ 17]], float)

c=array([[4, -2, 1, 11], [-2, 4, -2, -16], [1, -2, 4, 17]], float)

print ('Matrix dari persamaan adalah : ') print (c)

  1. define rows column

n=len(b) #number of rows and colomn, due too the matrix that is square matrix print ('n adalah ' + str(n))

for k in range (0,n-1):

   for i in  range (k+1,n):
       if A[i,k] != 0.0 :            #perintah jika sebuah baris yang akan di eliminasi, ada bagiannya yang tidak 0 maka akan di substract dengan pivot
           lam = A[i,k]/A[k,k]
           A[i, k+1:n] = A[i, k+1:n] - lam*A[k, k+1:n]
           b[i]=b[i] - lam*b[k]

x=np.zeros((3), float) for k in range (n-1,-1,-1):

   x[k]=(b[k]-np.dot(A[k,k+1:n], x[k+1:n]))/A[k,k]
   print (x[k])