Difference between revisions of "Rizki Ramadhan Siregar"

From ccitonlinewiki
Jump to: navigation, search
(Pertemuan 1 (31/03/2020) : Analisis Laminar Flow menggunakan CFDSOF)
(Pertemuan 1 (31/03/2020) : Analisis Laminar Flow menggunakan CFDSOF)
Line 56: Line 56:
 
'''Pertama-tama''', menentukan kecepatan fluida(u) agar diperoleh aliran yang laminar. Pada perhitungan ini, Pak Edo sebagai pemateri sudah memberi excel yang sudah jadi sehingga kita dapat langsung memasukkan kecepatan yang kita inginkan. Diperoleh kecepatan fluida 0,01 m/s yang termasuk kedalam aliran laminar karena memiliki Re < 2100.
 
'''Pertama-tama''', menentukan kecepatan fluida(u) agar diperoleh aliran yang laminar. Pada perhitungan ini, Pak Edo sebagai pemateri sudah memberi excel yang sudah jadi sehingga kita dapat langsung memasukkan kecepatan yang kita inginkan. Diperoleh kecepatan fluida 0,01 m/s yang termasuk kedalam aliran laminar karena memiliki Re < 2100.
  
[[File:excelCFDSOF12.jpg|600px|thumb|left|Data Excel Aliran Fluida]]<br/>
+
[[File:excelCFDSOF12.jpg|600px|thumb|center|Data Excel Aliran Fluida]]<br/>
  
  
Line 77: Line 77:
 
'''Kedua''', memulai analisis menggunakan software CFD dengan membuat proyek dan case baru.Setelah itu memasukkan bentuk,dimensi,basis serta jumlah mesh yang akan dianalisis.Sumbu Z diabaikan karena analisis ini hanya untuk 2 Dimensi. Langkah ini dipandu oleh pak Edo sebagai pemateri
 
'''Kedua''', memulai analisis menggunakan software CFD dengan membuat proyek dan case baru.Setelah itu memasukkan bentuk,dimensi,basis serta jumlah mesh yang akan dianalisis.Sumbu Z diabaikan karena analisis ini hanya untuk 2 Dimensi. Langkah ini dipandu oleh pak Edo sebagai pemateri
  
[[File:MeshCFD12.png|600px|thumb|left|Tampilan untuk mengatur mesh]]
+
[[File:MeshCFD12.png|600px|thumb|center|Tampilan untuk mengatur mesh]]
  
  
Line 107: Line 107:
 
'''Ketiga''',memasukkan data simulasi seperti properties dari fluida serta asumsi fluida dimana Inviscid , Incompressible, Steady-State, Laminar serta Subsonic
 
'''Ketiga''',memasukkan data simulasi seperti properties dari fluida serta asumsi fluida dimana Inviscid , Incompressible, Steady-State, Laminar serta Subsonic
  
[[File:SimulationCFD12.png|600px|thumb|left|Tampilan untuk mengatur properties fluida]]
+
[[File:SimulationCFD12.png|600px|thumb|center|Tampilan untuk mengatur properties fluida]]
  
  
Line 138: Line 138:
 
'''Keempat''',Jalankan CFD Solver .Setelah dijalankan, akan muncul grafik momentum residual terhadap waktu dimana diperoleh 65 iterasi
 
'''Keempat''',Jalankan CFD Solver .Setelah dijalankan, akan muncul grafik momentum residual terhadap waktu dimana diperoleh 65 iterasi
  
[[File:GrafikResidualCFD12.png|600px|thumb|left|Grafik Momentum Residual terhadap Waktu]]
+
[[File:GrafikResidualCFD12.png|600px|thumb|center|Grafik Momentum Residual terhadap Waktu]]
  
  
Line 302: Line 302:
  
 
5.'''Cara menghitung Pressure Drop''' penurunan tekanan fluida pada pipa dapat dihitung dengan rumus sebagai berikut:
 
5.'''Cara menghitung Pressure Drop''' penurunan tekanan fluida pada pipa dapat dihitung dengan rumus sebagai berikut:
 +
 +
[[File:PressureDropEquation.png|600px|thumb|center]]

Revision as of 00:20, 3 April 2020

بِسْمِ اللهِ الرَّحْمَنِ الرَّحِيْمِ

السَّلاَمُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُ

Biografi

Foto Rizki Ramadhan

Nama  : Rizki Ramadhan Siregar
NPM  : 1806233240
Tempat & Tanggal Lahir : Bengkulu, 4 Desember 2000
Jurusan  : Teknik Mesin

Perkenalkan saya Rizki Ramadhan dari kota Bengkulu. Saat ini saya berkuliah di Universitas Indonesia Jurusan Teknik Mesin angkatan 2018. Saya memiliki ketertarikan yang tinggi terhadap perkembangan teknologi dan berorientasi terhadap masa depan. Berbekal Pengalaman dan pelajaran dalam dunia perkuliahan yang saya jalani saat ini, Insha Allah akan memberikan sebuah makna baru untuk kehidupan kedepan dan berguna bagi nusa dan bangsa (Aamiin)

Konsep Dasar

Pengertian Bilangan Reynolds

Bilangan Reynolds adalah perbandingan antara gaya inersia fluida dan gaya viskos yang terjadi pada fluida tersebut.Bilangan Reynolds merupakan bilangan tak berdimensi yang dapat membedakan suatu aliran itu dinamakan laminar, transisi atau turbulen.

                                                      Re =  VD ρ/µ
       

Dimana :

V kecepatan (rata-rata) fluida yang mengalir (m/s)
D adalah diameter dalam pipa (m)
ρ adalah masa jenis fluida (kg/m3)
µ adalah viskositas dinamik fluida (kg/m.s) atau (N. det/ m2)


Viskositas

Viskositas fluida merupakan ukuran ketahanan sebuah fluida terhadap deformasi atau perubahan bentuk. Viskositas dipengaruhi oleh temperatur, tekanan, kohesi dan laju perpindahan momentum molekularnya. Viskositas zat cair cenderung menurun dengan seiring bertambahnya kenaikan temperatur hal ini disebabkan gaya – gaya kohesi pada zat cair bila dipanaskan akan mengalami penurunan dengan semakin bertambahnya temperatur pada zat cair yang menyebabkan berturunya viskositas dari zat cair tersebut.

Jenis Aliran pada Fluida

Terdapat setidaknya tiga jenis aliran pada fluida yaitu : 1.Laminar ; 2. Turbulen; 3. Transisi

1.Aliran Laminar
Aliran fulida dikatakan laminar jika memiliki Re(Reynolds Number)< 2100.Dalam aliran laminar ini viskositas berfungsi untuk meredam kecendrungan terjadinya gerakan relatif antara lapisan. Sehingga aliran laminar memenuhi hukum viskositas Newton yaitu :

                                                      τ = µ du/dy

2.Aliran Turbulen
Aliran dimana pergerakan dari partikel – partikel fluida sangat tidak menentu karena mengalami percampuran serta putaran partikel antar lapisan, yang mengakibatkan saling tukar momentum dari satu bagian fluida kebagian fluida yang lain dalam skala yang besar. Dalam keadaan aliran turbulen maka turbulensi yang terjadi membangkitkan tegangan geser yang merata diseluruh fluida sehingga menghasilkan kerugian – kerugian aliran.Pada Aliran ini biasanya memiliki Re > 4000.

3.Aliran Transisi
Aliran transisi merupakan aliran peralihan dari aliran laminar ke aliran turbulen.Memiliki Re: 2100-4000.


Pertemuan 1 (31/03/2020) : Analisis Laminar Flow menggunakan CFDSOF

Analisis yang dilakukan pada CFDSOF kali ini adalah analisis kecepatan(u) dan tekanan(p) fluida pada pipa sepanjang 1 meter dengan asumsi-asumsi yaitu: Inviscid , Incompressible, Steady-State,dan aliran Laminar.

Pertama-tama, menentukan kecepatan fluida(u) agar diperoleh aliran yang laminar. Pada perhitungan ini, Pak Edo sebagai pemateri sudah memberi excel yang sudah jadi sehingga kita dapat langsung memasukkan kecepatan yang kita inginkan. Diperoleh kecepatan fluida 0,01 m/s yang termasuk kedalam aliran laminar karena memiliki Re < 2100.

Data Excel Aliran Fluida










Kedua, memulai analisis menggunakan software CFD dengan membuat proyek dan case baru.Setelah itu memasukkan bentuk,dimensi,basis serta jumlah mesh yang akan dianalisis.Sumbu Z diabaikan karena analisis ini hanya untuk 2 Dimensi. Langkah ini dipandu oleh pak Edo sebagai pemateri

Tampilan untuk mengatur mesh














Ketiga,memasukkan data simulasi seperti properties dari fluida serta asumsi fluida dimana Inviscid , Incompressible, Steady-State, Laminar serta Subsonic

Tampilan untuk mengatur properties fluida















Keempat,Jalankan CFD Solver .Setelah dijalankan, akan muncul grafik momentum residual terhadap waktu dimana diperoleh 65 iterasi

Grafik Momentum Residual terhadap Waktu























Kelima, Buka Paraview untuk melihat distribusi kecepatan(u) dan tekanan(p) sepanjang pipa.

Distribusi Kecepatan Sepanjang Pipa



Terlihat Kecepatan fluida yang mengalir pada pipa secara umum homogen disepanjang pipa.Kecepatan maksimal berada pada sumbu dari pipa dan bernilai nol pada fluida yang bersentuhan dengan permukaan pipa.Namun terdapat perbedaan pada Inlet dikarenakan Profile belum terbentuk sempurna pada Entrance Region

Distribusi Tekanan Sepanjang Pipa











Pada distribusi tekanan terlihat bahwa semakin jauh dari titik inletnya,maka tekanan akan semakin berkurang. Hal ini disebabkan oleh terjadinya head loss atau penurunan tekanan fluida karena adanya gesekan antara permukaan pipa dengan fluida.












Keenam, Untuk mengetahui bentuk profil didapatkan dengan cara melakukan plot pada aliran yang telah sempurna terbentuk (Fully Develop) yaitu berada pada x=0,8 m dari titik (0,0,0). Angka ini didapatkan dari perhitungan Enterance Length yang menunjukkan pada jarak ke berapa profil sudah terbentuk dengan sempurna(Fully Developed).


Profile Kecepatan dan Tekanan














Materi Tambahan Aliran Viskositas

Pertemuan hari ini terdapat beberapa pertanyaan tambahan mengenai aliran viskos yang diberikan sebagai berikut.

Pertanyaan:

1. Apa itu entrance region/aliran masuk?

2. Apa itu fully developed flow/aliran berkembang sempurna?

3. Apa itu entrance length?

4. Apa pengaruh viskositas? dan pengaruh pressure drop dalam pipa?

5. Bagaimana cara menghitung pressure drop suatu aliran dalam laminar/turbulen?

Jawaban

1.Entrance Region adalah suatu wilayah atau daerah yang berada didekat dengan tempat masuknya fluida ke pipa. Atau bagian awal dari suatu empat aliran yang masuk dari suatu sumber. Contohnya Furnace.

2.Fully Develeoped Flow adalah kondisi dimana profil kecepatan fluida akan menjadi tetap besarnya.

Flow di Pipa.PNG

3.Entrance Length adalah panjang suatu aliran dari awal masuk pipa hingga mencapai kondisi dimana fully developed flow atau aliran yang berkembang sempurna.

Sumber: Book of “Fundamental fluid Dynamics By Munson"


4.Pressure Drop drop didefinisikan sebagai penurunan tekanan yang terjadi karena adanya gesekan pada fluida yang mengalir. Pressure drop akan semakin tinggi dan berbanding lurus dengan gesekan pada fluida. Sedangkan besarnya gesekan dipengaruhi oleh viskositas dari suatu fluida.

Pressure Drop Pipa.PNG

5.Cara menghitung Pressure Drop penurunan tekanan fluida pada pipa dapat dihitung dengan rumus sebagai berikut:

PressureDropEquation.png