Difference between revisions of "Kelompok 13"

From ccitonlinewiki
Jump to: navigation, search
(TUBE NO. 3 Analisis Pengaruh Spoiler pada Drag Force yang Terjadi Pada Mobil Bergerak)
(TUBES NO. 3 Analisis Pengaruh Spoiler pada Drag Force yang Terjadi Pada Mobil Bergerak)
Line 212: Line 212:
 
[[File:Mobil13.JPG|700px|center]]
 
[[File:Mobil13.JPG|700px|center]]
  
Gambaran mobil tanpa spoiler yang kami gunakan dalam analisis ini.
+
Gambaran mobil tanpa spoiler yang kami gunakan dalam analisis ini.[center]
  
 
[[File:ExcelDragForceMobil13.JPG|700px|center]]
 
[[File:ExcelDragForceMobil13.JPG|700px|center]]
  
 
Gambar hasil analisa kami.
 
Gambar hasil analisa kami.

Revision as of 20:12, 3 December 2019

Anggota Kelompok 13:

1. Viliasio Sirait

2. Muhammad Luqman Sugiyono

3. Zaim Kamil Muhammad

Pada pertemuan keempat, kami ditantang untuk membuat sebuah program python yang mampu menjawab eliminasi Gauss dari sebuh matriks. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana. Caranya adalah dengan melakukan operasi baris sehingga matriks tersebut menjadi matriks yang eselon-baris. Ini dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks Eselon-baris, lakukan substitusi balik untuk mendapatkan nilai dari variabel-variabel tersebut.

Eliminasi Gauss ini disempurnakan kembali dengan yang namanya Eliminasi Gauss Jordan. Dalam aljabar linear, eliminasi Gauss-Jordan adalah versi dari eliminasi Gauss. Pada metode eliminasi Gauss-Jordan kita membuat nol elemen-elemen di bawah maupun di atas diagonal utama suatu matriks. Hasilnya adalah matriks tereduksi yang berupa matriks diagonal satuan (semua elemen pada diagonal utama bernilai 1, elemen-elemen lainnya nol).

Berikut ini adalah kode program python yang telah saya pelajari:

from fractions import Fraction
def pprint(A):
   n = len(A)
   for i in range(0, n):
       line = ""
       for j in range(0, n+1):
           line += str(A[i][j]) + "\t"
           if j == n-1:
               line += "| "
       print(line)
   print("")
# Performs and returns the gauss elimination
# @A : matrix
def gauss(A):
   n = len(A)
   for i in range(0, n):
       # Search for maximum in this column
       maxE1 = abs(A[i][i])
       maxRow = i
       for k in range(i+1, n):
           # compares rows, first row can't start with zero
           if abs(A[k][i]) < maxE1 or maxE1 == 0:
               maxE1 = abs(A[k][i])
               maxRow = k
       # Swap maximum row with current row (column by column)
       for k in range(i, n+1):
           tmp = A[maxRow][k]
           A[maxRow][k] = A[i][k]
           A[i][k] = tmp
       # Make all rows below this one 0 in current column
       for k in range(i+1, n):
           c = -A[k][i]/A[i][i]
           for j in range(i, n+1):
               if i == j:
                   A[k][j] = 0
               else:
                   A[k][j] += c * A[i][j]
   # Print echelon matrix
   print("Echelon Matrix:\t")
   pprint(A)
   # Solve equation Ax = b for echelon matrix
   x = [0 for i in range(n)]
   for i in range(n - 1, -1, -1):
       # there is no solution
       if A[i][i] == 0:
           return [0 for i in range(n)]
       # normal solution
       else:
           x[i] = A[i][n]/A[i][i]
           for k in range(i-1, -1, -1):
               A[k][n] -= A[k][i]*x[i]
   return x
# test code
print('Please input the number of variables:')
n = int(input())
# creates a matrix of zeros
A = [[0 for j in range(n+1)] for i in range(n)]
# Read input data
print("Please enter each row separated by a new line:")
for i in range(0, n):
   line = map(Fraction, input().split(" "))
   for j, el in enumerate(line):
       A[i][j] = el
print("Please enter the solution column with values separated by spaces:")
line = input().split(" ")
lastLine = list(map(Fraction, line))
for i in range(0, n):
   A[i][n] = lastLine[i]
# Print input
print("\nMatrix:")
pprint(A)
# Calculate solution
x = gauss(A)
# Print solution
print("Result:")
# check results
solution = False
for i in range(n):
   if x[i] != 0:
       solution = True
# a solution exists
if solution:
   for i in range(len(x)):
       print("x", i+1, " = ", x[i])
# a solution does not exist
else:
   print("No Solution")


Ketika kode python ini dijalankan, maka akan keluar instruksi untuk mnginput banyak variabel dari sistem persamaan liniar. Setelah menginput variabel, muncul juga instruksi untuk memasukkan isi dari vektor variabel. Berikut ini merupakan sebuah contoh dari penggunaan kode python ini:

Tugas4Luqman.JPG

Ketika dibandingkan dengan kalkulator eliminasi gauss, didapatkan hasil yang benar-benar sama.

Tugas5Luqman.png


Aplikasi Runge Kutta

Tugasapprungekutta.jpg

2. Algoritma penyelesaian persamaan diferensial dengan Runge Kutta

a. Terdapat sebuah pegas dengan dengan k = 75 N/m, dikaitkan dengan massa sebesar 2.5 kg

b. Massa ditarik dengan fungsi P(t)

c. Jika massa ditarik dalam waktu kurang dari 2 detik, maka gaya yang menarik massa adalah 10t.

d. jika massa ditarik dalam 2 detik atau lebih, maka gaya yang menarik massa adalah 20 N.

e. Regangan terjauh ditentukan oleh besaran gaya yang menarik massa.

f. regangan terjauh dirumuskan dengan metode Runge Kutta, dengan y" terjauh = P(t)/m - ky/m

Equationrungekutta.png

3. Membuat Flow Chart


Zzzzzzzzz.png


4. Program Pyhton dengan Penyelesaian Aplikasi Runge Kutta

x0 = 0  # perpindahan ke-0 adalah 0
y = 0
h = 0.01  # step size sebesar 0.01
t = float(input("Masukkan nilai t: "))
if 0 <= t < 2:
   # dydx menyatakan persamaan awal dalam soal.
   # Didapat hasil 4x - 30y karena dipakai massa m = 2,5 kg dan konstanta pegas k = 75 N/m.
   # P(t) dinyatakan dalam x.
   def dydx(x, y):
       return (4*x - 30*y)
   # Ini merupakan implementasi perhitungan Runge-Kutta.
   def rungeKutta(x0, y0, x, h):
       n = (int)((x - x0)/h)
       y = y0
       for i in range(1, n + 1):
           k1 = h * dydx(x0, y)
           k2 = h * dydx(x0 + 0.5 * h, y + 0.5 * k1)
           k3 = h * dydx(x0 + 0.5 * h, y + 0.5 * k2)
           k4 = h * dydx(x0 + h, y + k3)
           # untuk y selanjutnya
           y = y + (1.0 / 6.0)*(k1 + 2 * k2 + 2 * k3 + k4)
           # untuk x selanjutnya
           x0 = x0 + h
       return y
   print("Nilai y pada t =", t, "adalah", rungeKutta(x0, y, t, h))
elif t >= 2:
   # Ketika x >= 2, maka variabel x sudah tidak lagi memengaruhi persamaan.
   def dydx(x, y):
       return (8 - 30*y)
   def rungeKutta(x0, y0, x, h):
       n = (int)((x - x0)/h)
       y = y0
       for i in range(1, n + 1):
           k1 = h * dydx(x0, y)
           k2 = h * dydx(x0 + 0.5 * h, y + 0.5 * k1)
           k3 = h * dydx(x0 + 0.5 * h, y + 0.5 * k2)
           k4 = h * dydx(x0 + h, y + k3)
           y = y + (1.0 / 6.0)*(k1 + 2 * k2 + 2 * k3 + k4)
           x0 = x0 + h
       return y
   print("Nilai y pada t =", t, "adalah", rungeKutta(x0, y, t, h))
else:
   print("Mohon masukkan nilai t positif.")


TUBES NO. 2 Analisis Drag Force pada Mobil Bergerak

Analisis untuk mendapatkan drag force pada mobil yang bergerak dilakukan pada aplikasi CFDSOF dan dilanjutkan pada ParaView. Untuk melakukan analisis, harus tersedia dulu model dari mobil tersebut dan dibuat dengan geometri tertentu. Pembuatan mobil di Inventor tidak bisa dengan ukuran sebesar mobil nyata karena akan terjadi error saat melakukan analisis di CFD. Pada tugas nomer 2 ini, kami diminta untuk mencari drag force pada mobil yang telah disediakan oleh asdos. Dalam proses pencarian drag, kecepatan velocity inlet dibuat sebagai variabel terikat (divariasikan). Tentu saja setelah velocuty inlet divariasikan, akan mendapatkan drag force yang beragam. Kemudian data-data kecepatan-drag force ini dibuat dalam kurva dan dibuat garis trendline nya di excel. Berikut ini adalah hasil yang telah kami lakukan pada analisis drag force dari mobil yang diberikan oleh asdos:

CarBody.png

Gambar diatas merupakan tampak mobil yang akan dianalisa kali ini. dengan bentuk sedemikian rupa, didapatkan area yang menyebabkan DragForce sebesar 0.958202 m^2.

ProsesAnalisisMobilPadaCFDSOF13.png

Proses Analisis Mobil pada software CFDSOF.

ProsesAnalisisMobilPadaParaView13.png

Proses Analisis Mobil pada software Paraview.

ExcelDragForceMobilDefault13.JPG

Hasil data-data kecepatan dan drag force yang telah ditemukan. Dibuat grafik v vs Drag dan dibuat regresi linearnya.


TUBES NO. 3 Analisis Pengaruh Spoiler pada Drag Force yang Terjadi Pada Mobil Bergerak

Tugas besar nomor 3 ini mahasiswa diminta untuk membuat sebuah mobil rancangan sendiri yang nantinya akan dianalisis drag forcenya sama seperti nomor 2. Yang membedakan disini adalah pada analisis mobil yang kita desain harus terdapat spoiler yang berfungsi membuat downforce. Disini akan terdapat banyak sekali data, karena terdapat variasi sudut spoiler relatif terhadap mobil dan terdapat variasi kecepatan di tiap variasi spoiler tersebut. Pertama-tama kami memulai analisis dengan mobilnya saja tanpa menggunakan spoiler. Berikut ini hasil yang kami dapatkan dari analisis tersebut.

Mobil13.JPG

Gambaran mobil tanpa spoiler yang kami gunakan dalam analisis ini.[center]

ExcelDragForceMobil13.JPG

Gambar hasil analisa kami.