Difference between revisions of "Kelompok 2"
Alesdaniel (talk | contribs) (→CFD CAR DRAG ANALYSIS) |
Alesdaniel (talk | contribs) (→CFD CAR DRAG ANALYSIS) |
||
Line 111: | Line 111: | ||
[[File:testcfdkel2_2.jpg|400px]] | [[File:testcfdkel2_2.jpg|400px]] | ||
+ | |||
+ | Lalu, dilakukan pengerjaan dengan filter ''Generate Surface Normal'', dengan mengapply tampak car_body saja yang terlihat. Kemudian, dilakukan kalkulasi besar P terhadap gaya normal sumbu x. Hasil tersebut kemudian di apply kembali sehingga menghasilkan perhitungan yang diinginkan yaitu ''Drag Force'' yang ditentukan. Didapatkan besarnya setelah dilakukan ''filter'' dan integrasi perhitungan yang ada. Berikut adalah skema yang dilakukan: | ||
+ | |||
+ | [[File:testcfdkel2_3.jpg|400px]] | ||
+ | |||
+ | Kemudian, dilakukan percobaan lainnya dengan variasi V dengan interval 1 dari 10 hingga 20. Akhirnya, didapatkan data yang kemudian dibentuk grafiknya serta ''trendline'' yang berbentuk kurva sebagai berikut: | ||
+ | |||
+ | [[File:testcfdkel2_4.jpg|400px]] |
Revision as of 14:15, 13 November 2019
3. Ales Daniel
Eliminasi Gauss
Pengerjaan dilakukan menggunakan algoritma Gauss seperti yang ada di buku Phyton. Namun, yang membedakan adalah tidak menggunakan module pada pengerjaan ini. Berikut adalah algoritma yang sudah dirancang berdasarkan soal pada buku Phyton :
Algoritma yang kami gunakan adalah sebagai berikut:
a = [[2,-3,-1], \ [3,2,5], \ [2,4,4]] b = [[3], \ [-9], \ [-5]] n = len(b) for k in range(0, n-1): for i in range(n-1, k, -1): if a[i][k] != 0.0: op= a[i][k]/a[i-1][k] b[i][0]=b[i][0]-op*b[i-1][0] for f in range(0,n): a[i][f]=a[i][f]-op*a[i-1][f] Hasil=['Hasilnya'] if a[2][2] !=0: z=b[2][0]/a[2][2] else: z=0 if a[0][0] !=0: y=(b[1][0]-z*a[1][2])/a[1][1] else: y=0 if a[0][0] !=0: x=(b[0][0]-z*a[0][2]-y*a[0][1])/a[0][0] else: x=0 hasil=(x,y,z) print(a)
Runge-Kutta Method
Pengerjaan dilakukan dan kode dirancang untuk mengikuti contoh soal.
# Di sini, kita akan menggunakan x0 dan y sebagai titik asal, x sebagai t yang diinginkan, dan h sebagai increment. Kita menggunakan h = 0.01. x0 = 0 y = 0 h = 0.01 x = float(input("Masukkan nilai t: ")) if 0 <= x < 2: # dydx menyatakan persamaan awal dalam soal. Persamaan harus diintegralkan sekali untuk menghasilkan persamaan kecepatan. # Didapat hasil 2x^2 - 30xy karena dipakai massa m = 2,5 kg dan konstanta pegas k = 75 N/m. # P(t) dinyatakan dalam x. def dydx(x, y): return (2*x**2 - 30*x*y) # Ini merupakan implementasi perhitungan Runge-Kutta. def rungeKutta(x0, y0, x, h): n = (int)((x - x0)/h) y = y0 for i in range(1, n + 1): k1 = h * dydx(x0, y) k2 = h * dydx(x0 + 0.5 * h, y + 0.5 * k1) k3 = h * dydx(x0 + 0.5 * h, y + 0.5 * k2) k4 = h * dydx(x0 + h, y + k3) # untuk y selanjutnya y = y + (1.0 / 6.0)*(k1 + 2 * k2 + 2 * k3 + k4) # untuk x selanjutnya x0 = x0 + h return y print("Nilai y pada t =", x, "adalah", rungeKutta(x0, y, x, h)) elif x >= 2: # Ketika x >= 2, perhitungan harus diganti karena P(t) sudah konstan di angka 20 N. def dydx(x, y): return (8 - 30*x*y) def rungeKutta(x0, y0, x, h): n = (int)((x - x0)/h) y = y0 for i in range(1, n + 1): k1 = h * dydx(x0, y) k2 = h * dydx(x0 + 0.5 * h, y + 0.5 * k1) k3 = h * dydx(x0 + 0.5 * h, y + 0.5 * k2) k4 = h * dydx(x0 + h, y + k3) y = y + (1.0 / 6.0)*(k1 + 2 * k2 + 2 * k3 + k4) x0 = x0 + h return y print("Nilai y pada t =", x, "adalah", rungeKutta(x0, y, x, h)) else: print("Mohon masukkan nilai t positif.")
CFD CAR DRAG ANALYSIS
Analysis drag dilakukan terlebih dahulu input data yang diperlukan pada CFD-Pre dan CFD-Solve. Berikut adalah hasil setelah dilakukan Mesh Geometry dan Run Solver dari mobil yang akan dianalisa.
Kemudian, pada bagian tab CFD-Post, dilakukan running dengan aplikasi Paraview untuk mengetahui drag force yang ingin dicari tahu.
Lalu, dilakukan pengerjaan dengan filter Generate Surface Normal, dengan mengapply tampak car_body saja yang terlihat. Kemudian, dilakukan kalkulasi besar P terhadap gaya normal sumbu x. Hasil tersebut kemudian di apply kembali sehingga menghasilkan perhitungan yang diinginkan yaitu Drag Force yang ditentukan. Didapatkan besarnya setelah dilakukan filter dan integrasi perhitungan yang ada. Berikut adalah skema yang dilakukan:
Kemudian, dilakukan percobaan lainnya dengan variasi V dengan interval 1 dari 10 hingga 20. Akhirnya, didapatkan data yang kemudian dibentuk grafiknya serta trendline yang berbentuk kurva sebagai berikut: