|
|
Line 1: |
Line 1: |
− | == KUIS ==
| |
| | | |
− | === Problem set 2.1 Nomor 6 halaman 55 ===
| |
− |
| |
− | Pada soal ini matrix yang diberikan soal adalah sebagai berikut,
| |
− |
| |
− | A = [[0, 0, 2, 1, 2], [0, 1, 0, 2, -1], [1, 2, 0, -2, 0], [0, 0, 0, -1, 1], [0, 1, -1, 1, -1]]
| |
− |
| |
− | B = [1, 1, -4, -2, -1]
| |
− |
| |
− | sebelum memasuki eliminasi gauss, matrix tersebut harus dikonfigurasi ulang agar bisa dihitung,
| |
− |
| |
− | konfigurasi matrix,
| |
− |
| |
− | A = [[1, 2, 0, -2, 0], [0, 1, 0, 2, -1],[0, 1, -1, 1, -1], [0, 0, 0, -1, 1], [0, 0, 2, 1, 2]]
| |
− |
| |
− | B = [-4, 1, -1, -2, 1]
| |
− |
| |
− | maka hasil yang akan didapatkan adalah,
| |
− |
| |
− | X1 = 2
| |
− |
| |
− | X2 = -2
| |
− |
| |
− | X3 = 1
| |
− |
| |
− | X4 = 1
| |
− |
| |
− | X5 = -1
| |
− |
| |
− | ==== kode python ====
| |
− |
| |
− | import numpy as np
| |
− |
| |
− | A=np.array([[1, 2, 0, -2, 0], [0, 1, 0, 2, -1],[0, 1, -1, 1, -1], [0, 0, 0, -1, 1], [0, 0, 2, 1, 2]],float)
| |
− |
| |
− | B=np.array([-4, 1, -1, -2, 1],float)
| |
− |
| |
− | n=len(A)
| |
− |
| |
− | for k in range (0,n-1):
| |
− | for i in range (k+1, n):
| |
− | if A[i,k]!=0 :
| |
− | lam= A[i,k]/A[k,k]
| |
− | A[i,k:n]= A[i, k:n]-(A[k,k:n]*lam)
| |
− | B[i]=B[i]-(B[k]*lam)
| |
− | print ('matrix A:', '\n', A)
| |
− | x=np.zeros(n,float)
| |
− | for m in range (n-1, -1, -1):
| |
− | x[m]=(B[m]-np.dot(A[m, m+1:n], x[m+1:n]))/A[m,m]
| |
− | print ('nilai X', m+1, '=', x[m])
| |