Difference between revisions of "Gigih Putro Pratomo"
Gigih.putro (talk | contribs) |
Gigih.putro (talk | contribs) (→UAS Metode Numerik) |
||
Line 113: | Line 113: | ||
input ("\nPress return to exit") | input ("\nPress return to exit") | ||
− | Link video: [ | + | Link video: [https://www.youtube.com/watch?v=0j-vFS2T7VU] |
Revision as of 01:40, 29 May 2019
Contents
Tugas 2
Untuk pengkodingan program Python dengan persamaan "ax + by = c" dan "px + qy = r" maka tahap-tahapnya adalah sebagai berikut:
import numpy as np
A = np.array([
[a, b, c] ])
B = np.array([
[p, q, r] ])
print (a + b)
print (a - b)
Latihan Metode Gauss
Tugas Kekakuan Pegas
Tugas 6 Metode Numerik
Link Video [[1]]
UAS Metode Numerik
import math def bracket(f,x1,h):
c = 1.618033989 f1 = f(x1) x2 = x1 + h f2 = f(x2) if f2 > f1: return x2,x1 - h for i in range (100): h = c*h x3 = x2 + h f3 = f(x3) if f3 > f2: return x1,x3 x1 = x2 x2 = x3 f1 = f2 f2 = f3 print ("bracket did not find a minimum")
def search(f,a,b,tol=1.0e-9):
nIter = int(math.ceil(-2.078087*math.log(tol/abs(b-a)))) R = 0.618033989 C = 1.0 - R x1 = R*a + C*b x2 = C*a + R*b f1 = f(x1) f2 = f(x2) for i in range(nIter): if f1 > f2: a = x1 x1 = x2 f1 = f2 x2 = C*a + R*b f2 = f(x2) else: b = x2 x2 = x1 f2 = f1 x1 = R*a + C*b f1 = (x1) if f1 < f2: return x1,f1 else: return x2,f2
print("aplikasi optimasi section modulus L stiffner") print("kondisi terkait : lebar alas > lebar atas > lebar tengah") b1 = eval(input("Nilai lebar bangun alas :")) b3 = eval(input("Nilai lebar bangun atas :")) b2 = eval(input("Nilai lebar bangun tengah :")) H = eval(input("Nilai tinggi L stiffner :")) def f(x):
A1 = b1*(H-x)/2 A2 = b2*x A3 = b3*(H-x)/2 d1 = 1/2*(H-x)/2 d2 = 1/2*x+(H-x)/2 d3 = 3/4*(H-x)+x I1 = 1/12*b1*((H-x)/2)**3 I2 = 1/12*b2*x**3 I3 = 1/12*b3*((H-x)/2)**3 dc = H-(d1*A1+d2*A2+d3*A3)/(A1+A2+A3) I = I1-A1*(d1-dc)**2+I2-A2*(d2-dc)**2+I3-A3*(d3-dc)**2 Z = I/dc return Z
xStart = 0.0 h = 1.0 x1,x2 = bracket(f,xStart,h) y,fMin = search(f,x1,x2) print("optimal sectional area =",-fMin) print("sectional area awal" , f(H)) A = -fMin/f(H)*100 print ("efisiensi",A,"%") input ("\nPress return to exit")
Link video: [2]