Difference between revisions of "Marvellyno Indru Kalwani"
Line 99: | Line 99: | ||
Berikut adalah code beserta hasilnya: | Berikut adalah code beserta hasilnya: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
def objective(x): | def objective(x): | ||
# x[0] represents the radius, x[1] represents the height | # x[0] represents the radius, x[1] represents the height |
Revision as of 12:27, 9 June 2023
Introduction Perkenalkan saya Marvellyno Indru Kalwani dengan NPM 2106702195 dari jurusan Teknik Perkapalan FTUI 2021
Contents
Resume pertemuan 26/05/2023
Pada pertemuan pertama saya mempelajari bahwa metode numerik merupakan sebuah metode penyelesaian dimana untuk menyelesaikan suatu masalah menggunakan pendekatan pendekatan. Kesadaran diri dan pemikiran yang terbuka memainkan peran penting dalam kehidupan kita. Pak DAI menjelaskan sekilas tentang penugasan kepada mahasiswa untuk mendesain tabung hydrogen 8 bar dengan batasan berupa produksi dari tabung tersebut harus kurang dari Rp500.000 . tugas ini diberikan karena mengingat energy hydrogen ini di masa depan diharapkan bisa menjadi solusi
Design & Optimization of Pressurized Hydrogen Storage
Objective : Design and Optimization Of Pressurized Hydrogen Storage
Spesification :
Capacity : 1 Litres
Pressure Level : 8 bar
Limitation : Cost should not exceed Rp.500.000
Week 1 progress
Before we dive deeper into the design & optimization phases, we must consciously understand the factors and processes involved in designing and optimizing the hydrogen storage first. ChatGPT helped me comprehensively to explain the factors and processes.
Prompt: "Explain to me comprehensively the factors and processes in designing and optimizing a compact pressurized hydrogen storage with limited cost" Designing and optimizing a compact pressurized hydrogen storage system with limited cost involves considering several factors and processes. Here's a comprehensive overview of the key considerations:
Storage Method
Pressurized hydrogen storage involves storing hydrogen gas at high pressures. One common method is using high-pressure cylinders made of lightweight, strong materials such as carbon fiber composites or advanced metals like aluminum alloys. Other options include metal hydride storage or cryogenic liquid hydrogen storage, but we'll focus on pressurized storage for this explanation.
Storage Capacity
Determine the required storage capacity in terms of hydrogen mass or volume. This will depend on the application and the desired range or usage time before refueling. Consider factors such as vehicle range, energy demand, or the specific requirements of the system you're designing.
Pressure Level
Select an appropriate pressure level based on safety, storage efficiency, and system requirements. Higher pressures provide greater storage capacity but require stronger materials, leading to increased costs. Common pressure levels for pressurized hydrogen storage range from 350 bar (5,076 psi) to 700 bar (10,152 psi).
Material Selection
Choose materials that can withstand the desired pressure level while minimizing weight and cost. Carbon fiber composite materials are widely used due to their high strength-to-weight ratio, but they can be expensive. Aluminum alloys provide a good balance between strength, weight, and cost.
Tank Design
Optimize the tank design to maximize storage capacity while adhering to safety regulations and minimizing costs. Consider factors such as tank shape, volume, thickness, and the number of tanks required. Advanced design techniques like finite element analysis can help determine the optimal tank shape and thickness distribution.
Safety Measures
Ensure the storage system meets safety standards to prevent leaks, ruptures, or explosions. This involves using certified materials, incorporating pressure relief devices, and designing structural reinforcements to withstand potential accidents. Safety should always be a top priority in hydrogen storage design.
Hydrogen Purity
Consider the required hydrogen purity for your specific application. Depending on the end-use, such as fuel cells, certain contaminants like moisture or impurities can be detrimental. Incorporate purification systems if needed, which may increase the overall system cost.
Refueling Considerations
Design the storage system to facilitate efficient refueling processes. Consider aspects such as refueling time, connection mechanisms, and compatibility with refueling infrastructure. Faster and more accessible refueling can enhance the usability and practicality of hydrogen storage systems.
Cost Optimization
Minimize costs by considering factors such as material selection, manufacturing processes, and economies of scale. Explore different manufacturing techniques, such as filament winding or automated fiber placement, to optimize production costs. Additionally, identifying cost-effective suppliers and exploring potential cost-saving innovations can help reduce overall expenses.
System Integration
Ensure seamless integration of the hydrogen storage system with the overall application or infrastructure. Consider factors like system weight, space requirements, and compatibility with other components or systems.
Testing and Certification
Perform rigorous testing to validate the design, ensure safety, and obtain necessary certifications. Test the storage system under various conditions, such as temperature, pressure, and vibration, to evaluate its performance and reliability. Compliance with relevant safety standards and certifications is essential.
Lifecycle Considerations
Consider the environmental impact and overall lifecycle cost of the storage system. Evaluate factors such as recyclability, energy consumption during manufacturing, and end-of-life disposal options to ensure a sustainable and cost-effective solution. Optimizing a compact pressurized hydrogen storage system with limited cost requires a holistic approach, considering technical, safety, economic, and environmental aspects. It is crucial to balance these factors to achieve an efficient and affordable storage solution
Final Report of Design & Optimization of Pressurized Hydrogen Storage
Kita harus melakukan pendekatan secara menyeluruh pada segala faktor yang berpengaruh dalam mendesain suatu komponen, terutama efisiensi dan optimisasi yang urgensinya sangat penting. Melalui kelas Metode Numerik dengan tugas mendesain dan mengoptimalkan pressurized hydrogen storage ini, kita dapat belajar untuk berpola pikir layaknya seorang insinyur. Secara tidak langsung, hal ini juga melatih consciousness kita.
Terdapat 3 batasan (constraints) yang menjadi acuan dalam optimisasi desain tangki hidrogen ini, yaitu geometris (geometrical constraint), kekuatan material (strength constraint), dan biaya (budget constraint). Berdasarkan diskusi yang telah dilakukan di kelas bersama teman-teman pada pekan lalu, material yang akan digunakan pada pembuatan tangki hidrogen ini adalah AISI 316 austenitic stainless steel. Austenitic stainless steel juga menjadi salah satu pilihan utama untuk pabrikan-pabrikan pembuat industrial hydrogen storage. Hal ini menandakan juga bahwa austenitic stainless steel sudah teruji secara ketersediaan, durabilitas, kekuatan, machinability, kompatibilitas dengan gas hidrogen (tidak bereaksi dengan hidrogen), dan sebagainya.
Batasan Geometris (Geometrical Constraint)
Geometri Dasar (Base)
Ukuran menjadi batasan yang paling utama dalam mendesain tangki hidrogen ini. Optimisasi yang dilakukan adalah membuat surface area seminimal mungkin agar biaya material juga semakin minimum, tetapi tetap dengan volume 1 liter. Namun, karena nanti terdapat reduksi volume akibat end caps, batasan volume pada coding kali ini dibesarkan sedikit menjadi 1,050 liter atau 1050 cm^3. Pada optimisasi geometris ini, dilakukan coding menggunakan Python dengan library NumPy dan SciPy.
Berikut adalah code beserta hasilnya: def objective(x):
# x[0] represents the radius, x[1] represents the height radius = x[0] height = x[1]
# Calculate the surface area of the cylindrical structure surface_area = 2 * np.pi * radius * (radius + height)
return surface_area
def constraint(x):
# x[0] represents the radius, x[1] represents the height radius = x[0] height = x[1]
# Calculate the internal volume of the cylindrical structure volume = np.pi * radius**2 * height
# Return the difference between the volume and the desired value (1050 cubic centimeters) return volume - 1050
- Initial guess for the radius and height
x0 = [1.0, 10.0]
- Define the bounds for the variables (radius and height)
bounds = [(0, None), (0, None)]
- Define the constraint dictionary
constraint_dict = {'type': 'eq', 'fun': constraint}
- Use the minimize function to optimize the objective function subject to the constraint
result = minimize(objective, x0, method='SLSQP', bounds=bounds, constraints=constraint_dict)
- Print the optimized results
print("Optimization Results:") print("Radius: {:.2f} cm".format(result.x[0])) print("Height: {:.2f} cm".format(result.x[1])) print("Surface Area: {:.2f} cm^2".format(result.fun))