Difference between revisions of "Lheriyana Cygan Alinro"

From ccitonlinewiki
Jump to: navigation, search
(Thickness)
(Height and Diameter)
Line 108: Line 108:
  
 
==== Height and Diameter ====
 
==== Height and Diameter ====
 +
 +
import math
 +
 +
def calculate_surface_area(radius, height):
 +
    base_area = math.pi * radius**2
 +
    lateral_area = 2 * math.pi * radius * height
 +
    surface_area = 2 * base_area + lateral_area
 +
 +
    return surface_area
 +
 +
def find_optimal_dimensions(volume, pressure, tensile_strength):
 +
    volume_cm3 = volume
 +
 +
    pressure_pa = pressure * 100000
 +
 +
    optimal_radius = None
 +
    optimal_height = None
 +
    min_surface_area = float('inf')
 +
 +
    for radius in range(1, int(math.sqrt(volume_cm3 / math.pi)) + 1):
 +
        height = volume_cm3 / (math.pi * radius**2)
 +
 +
        surface_area = calculate_surface_area(radius, height)
 +
 +
        if surface_area < min_surface_area:
 +
            min_surface_area = surface_area
 +
            optimal_radius = radius
 +
            optimal_height = height
 +
 +
    optimal_radius_cm = optimal_radius
 +
 +
    return optimal_radius_cm, optimal_height
 +
 +
volume = 1000  # 1 liter = 1000 mL
 +
pressure = 8  # bar
 +
tensile_strength = 600  # MPa
 +
 +
optimal_radius_cm, optimal_height = find_optimal_dimensions(volume, pressure, tensile_strength)
 +
 +
print(f"Dimensi yang menghasilkan luas permukaan terendah untuk tabung 1 liter dengan tekanan 8 bar:")
 +
print(f"Radius: {optimal_radius_cm} cm")
 +
print(f"Tinggi: {optimal_height} cm")
  
 
==== a ====
 
==== a ====

Revision as of 10:39, 9 June 2023

Introduction

Perkenalkan nama saya Lheriyana Cygan Alinro dengan NPM 2106633576 dari program studi teknik perkapalan, saya merupakan mahasiswa kelas Metode Numerik-04

Resume Pertemuan 1 (26/5/2023)

Pada pertemuan pertama, saya mempelajari bahwa metode numerik merupakan pendekatan yang digunakan untuk menyelesaikan permasalahan matematis yang kompleks dengan menggunakan perhitungan numerik atau angka-angka untuk mendapatkan solusi numerik yang mendekati solusi eksak. Pada matematika, sangat jarang ada hal yang eksak, dicontohkan dengan persamaan x²-1/x-1 dan (x+1)(x-1)/(x-1) jika nilai x=1, namun sebenarnya nilai x=1 tidak menunjukan nilai eksak 1 tetapi hanya mendekati 1. Maka dari itu untuk mendapatkan solusinya kita perlu menggunakan pendekatan agar lebih simple, sehingga kita membutuhkan consciousness untuk mengerjakan problem problem yang ada. Pada pertemuan pertama ini juga Pak DAI menugaskan kepada mahasiswa untuk mendesign tabung 1 liter tabung hydrogen dengan tekanan 8 bar dengan biaya maksimal Rp500.000


Design & Optimization of Pressurized Hydrogen

Objective: Design and Optimization Specification

Capacity: 1 L

Pressure level: 8 bar

Maximum cost: Rp500.000


Week 1 Progress

Optimizing hydrogen storage involves various steps and considerations. Here are some key steps to optimize hydrogen storage


Determine Storage Requirements

Define the specific requirements for your hydrogen storage system, including the desired storage capacity, operating pressure, temperature range, weight constraints, safety considerations, and any other relevant factors.

Evaluate Storage Methods

Explore different hydrogen storage methods, such as compressed gas storage, liquid hydrogen storage, or solid-state storage (e.g., metal hydrides, carbon-based materials). Evaluate the advantages, limitations, and suitability of each method for your application.

Material Selection

Choose materials that provide a balance between cost, weight, strength, and compatibility with hydrogen. Look for lightweight materials with high strength-to-weight ratios, such as high-strength steels, aluminum alloys, or advanced composite materials.

Optimize Storage Vessels

Design the storage vessel to maximize the amount of hydrogen that can be stored efficiently. Consider factors such as vessel shape, volume, material, insulation, and safety features. Perform structural analysis to ensure the vessel can withstand the required pressure and cyclic loading conditions.

Enhance Storage Conditions

Optimize storage conditions to improve the storage capacity and efficiency. Explore the impact of temperature, pressure, and gas purity on hydrogen storage. Investigate strategies for managing temperature and pressure variations to maximize storage performance.

Utilize Catalysts

Introduce suitable catalysts to enhance hydrogen storage and release kinetics. Catalysts can improve the sorption/desorption rates and increase storage capacity. Research catalysts that promote hydrogen interaction with storage materials and enable fast and reversible reactions.

Consider System Integration

Ensure compatibility and efficiency by considering the integration of the hydrogen storage system with the overall hydrogen infrastructure. Evaluate the storage system's compatibility with hydrogen production, delivery, and utilization technologies. Optimize the system for seamless operation within the broader hydrogen ecosystem.

Utilize Modeling and Simulation

Employ modeling and simulation tools to simulate the behavior of the hydrogen storage system. This enables you to evaluate different design configurations, predict performance under various operating conditions, and identify areas for improvement. Use computational models to study hydrogen sorption/desorption kinetics, thermodynamics, and system-level performance.

Conduct Experimental Validation

Perform experimental testing to validate the performance of the optimized storage system. This includes measuring storage capacity, sorption kinetics, cycling stability, and other relevant parameters. Compare experimental results with predicted outcomes to refine the design and improve accuracy.

Continuous Improvement

Embrace a continuous improvement mindset. Monitor advancements in hydrogen storage technologies, materials, and system integration approaches. Stay updated on emerging research and development efforts to identify new optimization opportunities.


Final Report of Hydrogen Storage Optimization

Thickness

import math
def calculate_thickness(volume, pressure):
   hydrogen_density = 0.08988  # kg/m^3 (density of hydrogen gas at room temperature)
   molar_mass_h2 = 2.016  # g/mol (molar mass of hydrogen gas)
   avogadro_constant = 6.02214076e23  # mol^(-1) (Avogadro constant)
   boltzmann_constant = 1.380649e-23  # J/K (Boltzmann constant)
   temperature = 298.15  # K (room temperature)
   
   liter_to_m3 = 0.001
   bar_to_pa = 100000

   volume_m3 = volume * liter_to_m3
   pressure_pa = pressure * bar_to_pa
   
   num_moles = (pressure_pa * volume_m3) / (boltzmann_constant * temperature)
   
   mass_hydrogen_kg = num_moles * molar_mass_h2 / 1000
   
   surface_area_m2 = mass_hydrogen_kg / hydrogen_density
   
   radius = math.sqrt(surface_area_m2 / (4 * math.pi))
   
   safety_factor = 1.5
   thickness_mm = safety_factor * radius * 1000
   
   return thickness_mm
capacity_liters = 1
pressure_bar = 8
thickness = calculate_thickness(capacity_liters, pressure_bar)
print(f"The optimized thickness of the stainless steel hydrogen storage is approximately {thickness} mm.")


Optimized thickness: 0.1 mm

Height and Diameter

import math
def calculate_surface_area(radius, height):
   base_area = math.pi * radius**2
   lateral_area = 2 * math.pi * radius * height
   surface_area = 2 * base_area + lateral_area
   return surface_area
def find_optimal_dimensions(volume, pressure, tensile_strength):
   volume_cm3 = volume
   pressure_pa = pressure * 100000
   optimal_radius = None
   optimal_height = None
   min_surface_area = float('inf')
   for radius in range(1, int(math.sqrt(volume_cm3 / math.pi)) + 1):
       height = volume_cm3 / (math.pi * radius**2)
       surface_area = calculate_surface_area(radius, height)
       if surface_area < min_surface_area:
           min_surface_area = surface_area
           optimal_radius = radius
           optimal_height = height
   optimal_radius_cm = optimal_radius
   return optimal_radius_cm, optimal_height
volume = 1000  # 1 liter = 1000 mL
pressure = 8  # bar
tensile_strength = 600  # MPa
optimal_radius_cm, optimal_height = find_optimal_dimensions(volume, pressure, tensile_strength)
print(f"Dimensi yang menghasilkan luas permukaan terendah untuk tabung 1 liter dengan tekanan 8 bar:")
print(f"Radius: {optimal_radius_cm} cm")
print(f"Tinggi: {optimal_height} cm")

a

a

a

a