Difference between revisions of "Renaldio Pradipta Puspito"
(→Design & Optimization of Pressurized Hydrogen Storage) |
(→Design & Optimization of Pressurized Hydrogen Storage) |
||
Line 54: | Line 54: | ||
It's important to note that designing and optimizing a pressurized hydrogen storage system requires detailed engineering analysis and expertise. Working with professionals experienced in hydrogen storage and considering the latest industry standards and regulations is highly recommended to ensure safety, performance, and cost-effectiveness. | It's important to note that designing and optimizing a pressurized hydrogen storage system requires detailed engineering analysis and expertise. Working with professionals experienced in hydrogen storage and considering the latest industry standards and regulations is highly recommended to ensure safety, performance, and cost-effectiveness. | ||
− | '''Geometry Optimization''' | + | ''[['''Geometry Optimization''']]'' |
'''Calculate Thickness''' | '''Calculate Thickness''' | ||
Line 194: | Line 194: | ||
'''Total harga''' | '''Total harga''' | ||
+ | |||
Dengan luas permukaan tabung sebesar 325.76 cm^2 dengan ketebalan plat 12 mm maka didapatkan total harga yang di dapat dari harga di marketplace tokopedia untuk plat besi carbon steel tipe S45C harga per 1 cm^2 dengan kebebalan 20 mm seharga Rp.828 , maka mendapatkan total harga Rp.269.100 untuk luas permukaan 326 cm^2 | Dengan luas permukaan tabung sebesar 325.76 cm^2 dengan ketebalan plat 12 mm maka didapatkan total harga yang di dapat dari harga di marketplace tokopedia untuk plat besi carbon steel tipe S45C harga per 1 cm^2 dengan kebebalan 20 mm seharga Rp.828 , maka mendapatkan total harga Rp.269.100 untuk luas permukaan 326 cm^2 |
Revision as of 09:57, 9 June 2023
Introductiom
Perkenalkan Nama Saya Renaldio Pradipta Puspito dengan NPM 2106733401 biasa dipanggil Aldi salam kenal
Resume Pertemuan 1
pada pertemuan ini kita membahas tentang consiousnes bagaimana cara menghubungkan metode numerik dengan ketuhanan yang maha esa. disini juga diperkenalkan dengan sistem dari air.eng.ui.ac.id. kami melakukan diskusi tentang kita itu harus consiousnes terhadap apa yang kita lakukan ntah itu dalam belajar metode numerik maupun mata kuliah lain. Kita juga membicarakan apakah ketika meninggal diri kita ada atau tidak. kurang lebih ini adalah pertemuan pembukan yang meng introduce antara dosen dengan mahasiswa yang meng highligt=ht tentang consciouness.
Design & Optimization of Pressurized Hydrogen Storage
objective Design and Optimization
specification cap : 1 L Pressure Level : 8 bar
Maximal price Rp.500000
Answer To design and optimize a pressurized hydrogen storage system with a capacity of 1 liter and a pressure level of 8 bar within a maximum price of Rp. 500,000, we need to consider various factors such as the storage vessel, materials, safety, and cost-efficiency. To answer this i use ChatGPT to help answer and Here's a suggested approach to designing and optimizing such a system:
Storage Vessel Selection:
Choose a lightweight and compact storage vessel with a capacity of 1 liter and a working pressure rating of at least 10-12 bar to provide a safety margin. Consider materials such as carbon fiber reinforced composites or high-strength steel that can withstand the desired pressure and minimize weight. Ensure the storage vessel complies with relevant safety standards and regulations.
Pressure Regulation:
Include a pressure regulator or pressure relief valve to maintain the hydrogen pressure at a constant level, preventing over-pressurization. Optimize the pressure regulator design to ensure efficient and reliable pressure control.
Safety Considerations:
Incorporate safety features such as burst disks or pressure relief devices to prevent excessive pressure buildup and ensure the system can safely vent hydrogen in case of emergencies. Implement a robust leak detection system to monitor and detect any potential leaks in the storage system. Follow safety guidelines and standards for hydrogen storage and handling.
Cost Optimization:
Consider cost-effective materials and manufacturing processes while maintaining safety and performance requirements. Explore potential cost savings by leveraging economies of scale in manufacturing or utilizing standardized components. Optimize the system design to minimize material usage and reduce manufacturing complexity.
System Integration:
Ensure proper integration of the storage system with the overall hydrogen infrastructure, considering factors like refueling protocols and compatibility with hydrogen fuel cell systems or other hydrogen-consuming devices.
Cost Analysis:
Conduct a thorough cost analysis considering the selected storage vessel, components, materials, manufacturing, and any additional safety features. Optimize the design and manufacturing processes to meet the maximum price requirement of Rp. 500,000.
It's important to note that designing and optimizing a pressurized hydrogen storage system requires detailed engineering analysis and expertise. Working with professionals experienced in hydrogen storage and considering the latest industry standards and regulations is highly recommended to ensure safety, performance, and cost-effectiveness.
Calculate Thickness
import math
def calculate_thickness(material, capacity, pressure):
if material == "low carbon steel":
tensile_strength = 300 # MPa
safety_factor = 3
else:
return "Invalid material"
volume = capacity * 1000 # Convert capacity from liters to cubic centimeters
pressure_pa = pressure * 0.1 # Convert pressure from bar to MegaPascal
thickness = (pressure_pa * volume * safety_factor) / (2 * math.pi * tensile_strength)
thickness_mm = thickness * 10 # Convert thickness from centimeters to millimeters
return thickness_mm
low_carbon_steel_thickness = calculate_thickness("low carbon steel", 1, 8)
print("Optimized thickness for low carbon steel:", low_carbon_steel_thickness, "mm")
didapatkan ukuran ketebalan bahan sebesar 12.732 mm
Mencari luas tabung
import math
def calculate_surface_area(radius, height):
# Calculate the surface area of the tube
base_area = math.pi * radius**2
lateral_area = 2 * math.pi * radius * height
surface_area = 2 * base_area + lateral_area
return surface_area
def find_optimal_dimensions(volume, pressure, tensile_strength):
# Convert volume from mL to cm^3
volume_cm3 = volume
# Convert pressure from bar to Pascal
pressure_pa = pressure * 100000
# Initialize variables for optimal dimensions
optimal_radius = None
optimal_height = None
min_surface_area = float('inf')
# Iterate over possible radius values
for radius in range(1, int(math.sqrt(volume_cm3 / math.pi)) + 1):
# Calculate the corresponding height for the given volume and radius
height = volume_cm3 / (math.pi * radius**2)
# Calculate the surface area for the current dimensions
surface_area = calculate_surface_area(radius, height)
# Check if the current surface area is the lowest found so far
if surface_area < min_surface_area:
min_surface_area = surface_area
optimal_radius = radius
optimal_height = height
# Convert optimal radius to centimeters
optimal_radius_cm = optimal_radius
return optimal_radius_cm, optimal_height
# Define the input parameters
volume = 1000 # 1 liter = 1000 mL
pressure = 8 # bar
tensile_strength = 300 # MPa
# Find the optimal dimensions
optimal_radius_cm, optimal_height = find_optimal_dimensions(volume, pressure, tensile_strength)
# Display the results
print(f"Dimensi yang menghasilkan luas permukaan terendah untuk tabung 1 liter dengan tekanan 8 bar:")
print(f"Radius: {optimal_radius_cm} cm")
print(f"Tinggi: {optimal_height} cm")
didapatkan radius tabung sebesar 5 cm dan tinggi 12.73 cm
Calculate surface Area
import math
def calculate_surface_area(radius, height):
return 2 * math.pi * radius * (radius + height)
def find_surface_area():
# Konversi radius, tinggi, dan ketebalan plat menjadi cm
radius_cm = 5
height_cm = 12.73
thickness_mm = 12.73
# Konversi kapasitas dalam liter menjadi volume dalam cm^3
volume = 1000
# Konversi tekanan dalam bar menjadi tekanan dalam Pa
pressure = 8 * 10**5
# Kekuatan tarik baja dalam Pa
tensile_strength = 300 * 10**6
# Konversi ketebalan plat menjadi cm
thickness_cm = thickness_mm / 10
# Hitung jari-jari dalam cm
inner_radius = radius_cm - thickness_cm
# Hitung tinggi dalam cm
inner_height = height_cm - (2 * thickness_cm)
# Hitung luas permukaan tabung dalam cm^2
surface_area = calculate_surface_area(inner_radius, inner_height)
# Periksa apakah tekanan dalam batas kekuatan tarik baja
if surface_area * pressure <= tensile_strength:
return surface_area
else:
return None
# Panggil fungsi untuk mencari luas permukaan tabung
surface_area = find_surface_area()
# Tampilkan hasil
if surface_area is not None:
print("Luas permukaan tabung hidrogen: ", surface_area, " cm^2")
else:
print("Luas permukaan tabung melebihi batas kekuatan tarik baja.")
didapatkan luas permukaan tabung hidrogen sebesar 325.76 cm^2
Total harga
Dengan luas permukaan tabung sebesar 325.76 cm^2 dengan ketebalan plat 12 mm maka didapatkan total harga yang di dapat dari harga di marketplace tokopedia untuk plat besi carbon steel tipe S45C harga per 1 cm^2 dengan kebebalan 20 mm seharga Rp.828 , maka mendapatkan total harga Rp.269.100 untuk luas permukaan 326 cm^2