Difference between revisions of "Muhammad Ikhsan Rahadian"

From ccitonlinewiki
Jump to: navigation, search
(Biodata)
(Case Study of Hydrogen Storage Optimization)
Line 24: Line 24:
 
Pressurized hydrogen tanks are used in various industries and applications such as fuel cell vehicles, energy storage, and industrial process.
 
Pressurized hydrogen tanks are used in various industries and applications such as fuel cell vehicles, energy storage, and industrial process.
 
In this class, our goal is to improve and optimize the pressurized hydrogen tank's design to withstand an 8-bar pressure and hold 1 liter of hydrogen.
 
In this class, our goal is to improve and optimize the pressurized hydrogen tank's design to withstand an 8-bar pressure and hold 1 liter of hydrogen.
 +
 +
== Hydrogen Tank ==
 +
 +
Pressurized hydrogen refers to hydrogen gas that is stored or transported at high pressures. Hydrogen is naturally a gas at standard temperature and pressure (STP), which is defined as 0 degrees Celsius (32 degrees Fahrenheit) and 1 atmosphere of pressure. However, when hydrogen is subjected to higher pressures, it becomes compressed and occupies a smaller volume.
 +
 +
Pressurized hydrogen is typically stored in specially designed containers, such as high-pressure cylinders or tanks, that can withstand the increased internal pressure. These containers are constructed using materials that can handle high pressures. The hydrogen gas is compressed into these containers, allowing for a greater quantity of hydrogen to be stored in a smaller space.

Revision as of 22:13, 5 June 2023

Biodata

Assalamualaikum. Wr. Wb Selamat pagi, siang, sore, malam. Hello, my name is Ikhsan, currently studying Mechanical Engineering at The University of Indonesia. This blog was made for Numerical Method KKI that I took this semester with Pak DAI as the lecturer.

Foto ts.jpeg

Name: Muhammad Ikhsan Rahadian

Date of Birth: Agustus 2nd, 2002

NPM: 2106656882

Major: Mechanical Engineering

E-mail: ikhsan.sony2@gmail.com

Case Study of Hydrogen Storage Optimization

A pressurized hydrogen tank is a specialized container designed to store hydrogen gas at high pressures. These tanks are essential for the safe storage and transport of hydrogen, which is a highly flammable and low-density gas. Pressurizing hydrogen increases its energy density and allows for more efficient storage and utilization in various applications. Usually, materials that can withstand high pressures are used to build pressurized hydrogen tanks. These materials offer the strength and durability needed to hold the hydrogen gas under high pressure. Pressurized hydrogen tanks are used in various industries and applications such as fuel cell vehicles, energy storage, and industrial process. In this class, our goal is to improve and optimize the pressurized hydrogen tank's design to withstand an 8-bar pressure and hold 1 liter of hydrogen.

Hydrogen Tank

Pressurized hydrogen refers to hydrogen gas that is stored or transported at high pressures. Hydrogen is naturally a gas at standard temperature and pressure (STP), which is defined as 0 degrees Celsius (32 degrees Fahrenheit) and 1 atmosphere of pressure. However, when hydrogen is subjected to higher pressures, it becomes compressed and occupies a smaller volume.

Pressurized hydrogen is typically stored in specially designed containers, such as high-pressure cylinders or tanks, that can withstand the increased internal pressure. These containers are constructed using materials that can handle high pressures. The hydrogen gas is compressed into these containers, allowing for a greater quantity of hydrogen to be stored in a smaller space.