Difference between revisions of "Audry Jonathan P. T. Sitompul"

From ccitonlinewiki
Jump to: navigation, search
Line 1: Line 1:
==BIODATA DIRI==
+
=Introduction=
Nama : Audry Jonathan P. T. Sitompul
+
[[File: Audry_Jonathan.JPG|300x300px]]
  
NPM : 2106709283
+
'''Pagi Mesin!'''
  
Jurusan : Teknik Mesin
+
Assalamu'alaikum Wr. Wb.
  
Program : S1 Reguler
+
Halo semua! Perkenalkan, saya '''Audry Jonathan P. T. Sitompul''', akrab dipanggil '''Jo''', dengan NPM '''2106709283'''. Saya adalah mahasiswa Program Studi S1 Teknik Mesin angkatan 2021. Berikut adalah resume-resume saya selama pembelajaran di kelas '''Metode Numerik 01'''.
  
Angkatan : 2021
+
"''Trust the process''" Kalimat tersebut merupakan motto hidup saya agar selalu memaknai '''''consciousness''''' dalam setiap hal yang saya lakukan.
  
 
__TOC__
 
__TOC__

Revision as of 02:19, 6 June 2023

Introduction

300x300px

Pagi Mesin!

Assalamu'alaikum Wr. Wb.

Halo semua! Perkenalkan, saya Audry Jonathan P. T. Sitompul, akrab dipanggil Jo, dengan NPM 2106709283. Saya adalah mahasiswa Program Studi S1 Teknik Mesin angkatan 2021. Berikut adalah resume-resume saya selama pembelajaran di kelas Metode Numerik 01.

"Trust the process" Kalimat tersebut merupakan motto hidup saya agar selalu memaknai consciousness dalam setiap hal yang saya lakukan.

TUGAS HYDROGEN STORAGE OPTIMIZATION

In this study case i will use a commonly used numerical method called "particle swarm optimization" (PSO):

1. Define the Problem: Clearly state the objective function that represents the performance criteria of the hydrogen storage system. It could be maximizing the storage capacity, minimizing the weight or volume, or optimizing any other relevant parameter.

2. Define Variables and Constraints: Identify the variables that can be adjusted to optimize the system, such as tank dimensions, materials, operating conditions, etc. Also, define any constraints that need to be satisfied, such as pressure limits, safety requirements, or cost considerations.

3. Initialize the Swarm: Create a population of potential solutions (particles) that represent different configurations of the hydrogen storage system. Randomly initialize their positions and velocities within the search space.

4. Evaluate Fitness: Evaluate the fitness of each particle by applying the objective function to its corresponding configuration. This step involves performing calculations and simulations to determine the system's performance for each particle.

5. Update Particle's Best Position: For each particle, compare its fitness with the best fitness achieved by that particle so far. If the current fitness is better, update the particle's best position accordingly.

6. Update Global Best Position: Identify the particle with the best fitness among all the particles and record its position as the global best position found so far.

7. Update Velocities and Positions: Update the velocities and positions of each particle based on its own best position and the global best position. This step involves using mathematical equations that incorporate inertia, cognitive, and social parameters to guide the particles' movement.

8. Repeat: Repeat steps 4 to 7 until a termination criterion is met. This criterion could be a maximum number of iterations, reaching a desired fitness threshold, or other convergence criteria.

9. Extract Optimal Solution: Once the algorithm terminates, the particle with the best fitness (global best) represents the optimized design and configuration of the hydrogen storage system. Extract the corresponding parameters and evaluate their values.

10. Validate and Refine: Validate the optimal solution obtained by implementing it in practical applications or conducting further simulations. Refine the solution if necessary based on additional constraints or considerations.

Particle swarm optimization is just one of many numerical methods available for optimization problems. Depending on the specific characteristics of the hydrogen storage system and the optimization goals, other methods like genetic algorithms, simulated annealing, or gradient-based optimization techniques may also be applicable.