Difference between revisions of "User:Zharfan.rosyad"

From ccitonlinewiki
Jump to: navigation, search
(Pressurized Hydrogen Storage Optimization)
(Pressurized Hydrogen Storage Optimization)
Line 13: Line 13:
 
'''1. Material Selection: '''
 
'''1. Material Selection: '''
 
<br>Choose materials that are suitable for storing pressurized hydrogen. Common materials include high-strength steel, aluminum, or carbon fiber composites. The selected materials should have sufficient strength and corrosion resistance to withstand high-pressure hydrogen and ensure long-term durability.
 
<br>Choose materials that are suitable for storing pressurized hydrogen. Common materials include high-strength steel, aluminum, or carbon fiber composites. The selected materials should have sufficient strength and corrosion resistance to withstand high-pressure hydrogen and ensure long-term durability.
 +
 
'''2. Pressure: '''
 
'''2. Pressure: '''
 
<br>Determine the desired pressure rating for the storage system based on the application requirements. Consider factors such as hydrogen storage capacity, system weight, and safety considerations. Ensure that the storage vessel and associated components can safely contain the intended pressure without deformation or leakage.
 
<br>Determine the desired pressure rating for the storage system based on the application requirements. Consider factors such as hydrogen storage capacity, system weight, and safety considerations. Ensure that the storage vessel and associated components can safely contain the intended pressure without deformation or leakage.
 +
 
'''3. Safety Features: '''
 
'''3. Safety Features: '''
 
<br>Incorporate safety features into the storage system design. This may include pressure relief devices, such as pressure relief valves or rupture disks, to prevent overpressure situations. Implement measures for thermal management, such as pressure relief devices or cooling systems, to handle potential temperature fluctuations during operation.
 
<br>Incorporate safety features into the storage system design. This may include pressure relief devices, such as pressure relief valves or rupture disks, to prevent overpressure situations. Implement measures for thermal management, such as pressure relief devices or cooling systems, to handle potential temperature fluctuations during operation.
 +
 
'''4. Structural Integrity: '''
 
'''4. Structural Integrity: '''
 
<br>Design the storage vessel to have structural integrity and resistance to external loads. Consider factors such as mechanical stress, fatigue, and vibration to ensure the storage system can withstand various operational conditions. Perform rigorous structural analysis and testing to validate the design's integrity.
 
<br>Design the storage vessel to have structural integrity and resistance to external loads. Consider factors such as mechanical stress, fatigue, and vibration to ensure the storage system can withstand various operational conditions. Perform rigorous structural analysis and testing to validate the design's integrity.
 +
 
'''5. Leakage Prevention: '''
 
'''5. Leakage Prevention: '''
 
<br>Implement effective sealing mechanisms to prevent hydrogen leakage. This involves using appropriate sealing materials, such as gaskets or O-rings, and ensuring proper installation and maintenance procedures. Conduct leak testing during manufacturing and periodically inspect the system for potential leakage points.
 
<br>Implement effective sealing mechanisms to prevent hydrogen leakage. This involves using appropriate sealing materials, such as gaskets or O-rings, and ensuring proper installation and maintenance procedures. Conduct leak testing during manufacturing and periodically inspect the system for potential leakage points.
 +
 
'''6. Temperature Management: '''
 
'''6. Temperature Management: '''
 
<br>Develop strategies for managing temperature fluctuations within the storage system. Thermal insulation materials and design considerations should be employed to minimize heat transfer and maintain the hydrogen at the desired temperature range. This is particularly important for cryogenic hydrogen storage systems.
 
<br>Develop strategies for managing temperature fluctuations within the storage system. Thermal insulation materials and design considerations should be employed to minimize heat transfer and maintain the hydrogen at the desired temperature range. This is particularly important for cryogenic hydrogen storage systems.
 +
 
'''7. Finance: '''
 
'''7. Finance: '''
 
<br>create a system according to existing needs and finances, there is no need to cut material or reduce the type of material because this is related to the security and safety of the surrounding environment
 
<br>create a system according to existing needs and finances, there is no need to cut material or reduce the type of material because this is related to the security and safety of the surrounding environment

Revision as of 12:29, 29 May 2023

Introduction

Zharfan2.jpg]

Halo semua. Perkenalkan nama saya Zharfan Rosyad biasa dipanggil Zharfan dengan NPM 2106707366, saya merupakan mahasiswa aktif departemen Teknik Mesin UI angkatan 2021 saat ini saya sedang menjalani perkuliahan di kelas Metode Numerik 01

Pressurized Hydrogen Storage Optimization

Progress Pekan 1

Task: Optimasi tangki hidrogen dengan kapasitas 1 liter, pressure 8 bar, dan biaya produksi maksimal Rp. 500.000

Dalam merencang suatu tangki hidrogen sebagai seorang engineer perlu meninjau dari berbagai macam faktor. berikut merupakan faktor yang harus ditinjau :

1. Material Selection:
Choose materials that are suitable for storing pressurized hydrogen. Common materials include high-strength steel, aluminum, or carbon fiber composites. The selected materials should have sufficient strength and corrosion resistance to withstand high-pressure hydrogen and ensure long-term durability.

2. Pressure:
Determine the desired pressure rating for the storage system based on the application requirements. Consider factors such as hydrogen storage capacity, system weight, and safety considerations. Ensure that the storage vessel and associated components can safely contain the intended pressure without deformation or leakage.

3. Safety Features:
Incorporate safety features into the storage system design. This may include pressure relief devices, such as pressure relief valves or rupture disks, to prevent overpressure situations. Implement measures for thermal management, such as pressure relief devices or cooling systems, to handle potential temperature fluctuations during operation.

4. Structural Integrity:
Design the storage vessel to have structural integrity and resistance to external loads. Consider factors such as mechanical stress, fatigue, and vibration to ensure the storage system can withstand various operational conditions. Perform rigorous structural analysis and testing to validate the design's integrity.

5. Leakage Prevention:
Implement effective sealing mechanisms to prevent hydrogen leakage. This involves using appropriate sealing materials, such as gaskets or O-rings, and ensuring proper installation and maintenance procedures. Conduct leak testing during manufacturing and periodically inspect the system for potential leakage points.

6. Temperature Management:
Develop strategies for managing temperature fluctuations within the storage system. Thermal insulation materials and design considerations should be employed to minimize heat transfer and maintain the hydrogen at the desired temperature range. This is particularly important for cryogenic hydrogen storage systems.

7. Finance:
create a system according to existing needs and finances, there is no need to cut material or reduce the type of material because this is related to the security and safety of the surrounding environment