Difference between revisions of "Muhammad Ammar Anuttara"
Ammaranttr (talk | contribs) (→Optimization of a Hydrogen Tank) |
Ammaranttr (talk | contribs) (→Optimization of a Hydrogen Tank) |
||
Line 25: | Line 25: | ||
To optimise the price-to-performance ratio, we can consider these components and materials for our hydrogen tank. | To optimise the price-to-performance ratio, we can consider these components and materials for our hydrogen tank. | ||
− | First, we are going to use an aluminium alloy tank. Aluminium alloy is generally a great cost-effective material used in hydrogen tanks. They have sufficient strength and durability while having a relatively low cost. A great alternative to aluminium alloy would be steel as it offers more or less the same benefits and cost. These materials will also be used for the mounting brackets | + | *First, we are going to use an aluminium alloy tank. Aluminium alloy is generally a great cost-effective material used in hydrogen tanks. They have sufficient strength and durability while having a relatively low cost. A great alternative to aluminium alloy would be steel as it offers more or less the same benefits and cost. These materials will also be used for the mounting brackets |
− | Since our hydrogen tank is low-pressure, the perfect material for thermal insulation is polyurethane foam. Polyurethane foam insulation is cost-effective and widely used for low-pressure applications. It provides good thermal insulation properties, reducing heat transfer and keeping the hydrogen at a stable temperature. | + | *Since our hydrogen tank is low-pressure, the perfect material for thermal insulation is polyurethane foam. Polyurethane foam insulation is cost-effective and widely used for low-pressure applications. It provides good thermal insulation properties, reducing heat transfer and keeping the hydrogen at a stable temperature. |
− | The pressure relief device of our hydrogen tank would be a spring-loaded valve. Using this option would be as cost-effective as it could be because this variant does not use any electronics and does the job well to release excess pressure. For the pressure gauge, we will be using a bourdon tube pressure gauge. | + | *The pressure relief device of our hydrogen tank would be a spring-loaded valve. Using this option would be as cost-effective as it could be because this variant does not use any electronics and does the job well to release excess pressure. For the pressure gauge, we will be using a bourdon tube pressure gauge. |
− | Lastly, our valves will be using brass or stainless steel. Valves made from brass or stainless steel can be affordable and suitable for low-pressure applications. These materials provide good corrosion resistance and can withstand the operating pressure of 8 bars. | + | *Lastly, our valves will be using brass or stainless steel. Valves made from brass or stainless steel can be affordable and suitable for low-pressure applications. These materials provide good corrosion resistance and can withstand the operating pressure of 8 bars. |
Revision as of 03:33, 29 May 2023
Introduction
My name is Muhammad Ammar Anuttara, but people usually call me Ammar. I’m a Mechanical Engineering student at Universitas Indonesia who is also a creative worker with adept social skills that is willing to work as a team. I’m able to adapt to most conditions and not afraid to learn something new.
You can contact me through my LinkedIn[1].
Optimization of a Hydrogen Tank
Today, we will discuss the optimization of a 1 litre, 8 bar pressured hydrogen storage tank. We will optimise its price-to-performance ratio to be as effective as it can be budget-friendly.
Before we proceed, we need to know the components of a standard hydrogen tank. A hydrogen tank consists of these items:
- Base Tank (usually made out of steel and lined with other materials for thermal insulation)
- Neck
- Outer Wrapping
- Valves
- End Plug
- Pressure Gauge
- Pressure Relief Device
- Mounting brackets
To optimise the price-to-performance ratio, we can consider these components and materials for our hydrogen tank.
- First, we are going to use an aluminium alloy tank. Aluminium alloy is generally a great cost-effective material used in hydrogen tanks. They have sufficient strength and durability while having a relatively low cost. A great alternative to aluminium alloy would be steel as it offers more or less the same benefits and cost. These materials will also be used for the mounting brackets
- Since our hydrogen tank is low-pressure, the perfect material for thermal insulation is polyurethane foam. Polyurethane foam insulation is cost-effective and widely used for low-pressure applications. It provides good thermal insulation properties, reducing heat transfer and keeping the hydrogen at a stable temperature.
- The pressure relief device of our hydrogen tank would be a spring-loaded valve. Using this option would be as cost-effective as it could be because this variant does not use any electronics and does the job well to release excess pressure. For the pressure gauge, we will be using a bourdon tube pressure gauge.
- Lastly, our valves will be using brass or stainless steel. Valves made from brass or stainless steel can be affordable and suitable for low-pressure applications. These materials provide good corrosion resistance and can withstand the operating pressure of 8 bars.