Difference between revisions of "Musyafi Albar"
(→Perhitungan Displacement, Reaction Force, Stress, dan Safety Factor) |
(→Perhitungan Displacement, Reaction Force, Stress, dan Safety Factor) |
||
Line 729: | Line 729: | ||
Real displacement[N], reaction[N]; | Real displacement[N], reaction[N]; | ||
Real check[3]; | Real check[3]; | ||
− | |||
Real stress1[Trusses]; | Real stress1[Trusses]; | ||
Real safety[Trusses]; | Real safety[Trusses]; | ||
Real dis[3]; | Real dis[3]; | ||
− | Real Str[3]; | + | Real Str[3]; |
− | |||
protected | protected | ||
parameter Integer N=3*Points; | parameter Integer N=3*Points; | ||
Real q1[3], q2[3], g[N,N], G[N,N], G_star[N,N], id[N,N]=identity(N), cx, cy, cz, L, X[3,3]; | Real q1[3], q2[3], g[N,N], G[N,N], G_star[N,N], id[N,N]=identity(N), cx, cy, cz, L, X[3,3]; | ||
Real err=10e-10, ers=10e-4; | Real err=10e-10, ers=10e-4; | ||
− | |||
algorithm | algorithm | ||
//Creating Global Matrix | //Creating Global Matrix | ||
Line 747: | Line 744: | ||
q1[j]:=P[C[i,1],j]; | q1[j]:=P[C[i,1],j]; | ||
q2[j]:=P[C[i,2],j]; | q2[j]:=P[C[i,2],j]; | ||
− | end for; | + | end for; |
− | |||
//Solving Matrix | //Solving Matrix | ||
L:=Modelica.Math.Vectors.length(q2-q1); | L:=Modelica.Math.Vectors.length(q2-q1); | ||
Line 757: | Line 753: | ||
cy*cx,cy^2,cy*cz; | cy*cx,cy^2,cy*cz; | ||
cz*cx,cz*cy,cz^2]; | cz*cx,cz*cy,cz^2]; | ||
− | |||
//Transforming to global matrix | //Transforming to global matrix | ||
g:=zeros(N,N); | g:=zeros(N,N); | ||
Line 766: | Line 761: | ||
g[3*(C[i,1]-1)+m,3*(C[i,2]-1)+n]:=-X[m,n]; | g[3*(C[i,1]-1)+m,3*(C[i,2]-1)+n]:=-X[m,n]; | ||
end for; | end for; | ||
− | |||
G_star:=G+g; | G_star:=G+g; | ||
G:=G_star; | G:=G_star; | ||
end for; | end for; | ||
− | |||
//Implementing boundary | //Implementing boundary | ||
for x in 1:Points loop | for x in 1:Points loop | ||
Line 792: | Line 785: | ||
end if; | end if; | ||
end for; | end for; | ||
− | |||
//Solving displacement | //Solving displacement | ||
displacement:=Modelica.Math.Matrices.solve(G,F); | displacement:=Modelica.Math.Matrices.solve(G,F); | ||
− | |||
//Solving reaction | //Solving reaction | ||
reaction:=(G_star*displacement)-F; | reaction:=(G_star*displacement)-F; | ||
− | |||
//Eliminating float error | //Eliminating float error | ||
for i in 1:N loop | for i in 1:N loop | ||
Line 804: | Line 794: | ||
displacement[i]:=if abs(displacement[i])<=err then 0 else displacement[i]; | displacement[i]:=if abs(displacement[i])<=err then 0 else displacement[i]; | ||
end for; | end for; | ||
− | |||
//Checking Force | //Checking Force | ||
check[1]:=sum({reaction[i] for i in (1:3:(N-2))})+sum({F[i] for i in (1:3:(N-2))}); | check[1]:=sum({reaction[i] for i in (1:3:(N-2))})+sum({F[i] for i in (1:3:(N-2))}); | ||
check[2]:=sum({reaction[i] for i in (2:3:(N-1))})+sum({F[i] for i in (2:3:(N-1))}); | check[2]:=sum({reaction[i] for i in (2:3:(N-1))})+sum({F[i] for i in (2:3:(N-1))}); | ||
− | check[3]:=sum({reaction[i] for i in (3:3:N)})+sum({F[i] for i in (3:3:N)}); | + | check[3]:=sum({reaction[i] for i in (3:3:N)})+sum({F[i] for i in (3:3:N)}); |
− | |||
for i in 1:3 loop | for i in 1:3 loop | ||
check[i] := if abs(check[i])<=ers then 0 else check[i]; | check[i] := if abs(check[i])<=ers then 0 else check[i]; | ||
end for; | end for; | ||
− | |||
//Calculating stress in each truss | //Calculating stress in each truss | ||
for i in 1:Trusses loop | for i in 1:Trusses loop | ||
Line 820: | Line 807: | ||
q2[j]:=P[C[i,2],j]; | q2[j]:=P[C[i,2],j]; | ||
dis[j]:=abs(displacement[3*(C[i,1]-1)+j]-displacement[3*(C[i,2]-1)+j]); | dis[j]:=abs(displacement[3*(C[i,1]-1)+j]-displacement[3*(C[i,2]-1)+j]); | ||
− | end for; | + | end for; |
− | |||
//Solving Matrix | //Solving Matrix | ||
L:=Modelica.Math.Vectors.length(q2-q1); | L:=Modelica.Math.Vectors.length(q2-q1); | ||
Line 829: | Line 815: | ||
X:=(Elas/L)*[cx^2,cx*cy,cx*cz; | X:=(Elas/L)*[cx^2,cx*cy,cx*cz; | ||
cy*cx,cy^2,cy*cz; | cy*cx,cy^2,cy*cz; | ||
− | cz*cx,cz*cy,cz^2]; | + | cz*cx,cz*cy,cz^2]; |
− | |||
Str:=(X*dis); | Str:=(X*dis); | ||
stress1[i]:=Modelica.Math.Vectors.length(Str); | stress1[i]:=Modelica.Math.Vectors.length(Str); | ||
end for; | end for; | ||
− | |||
//Safety factor | //Safety factor | ||
for i in 1:Trusses loop | for i in 1:Trusses loop | ||
Line 843: | Line 827: | ||
end if; | end if; | ||
end for; | end for; | ||
+ | end Trusses3DTugasBesar; | ||
− | end | + | ====Perhitungan Rasio Perbandingan Safety Factor dan Biaya==== |
+ | selanjutnya diperlukan pendataan guna mendapatkan banyak data yang diperlukan dalam proses curve fitting, yang nantinya akan digunakan untuk optimasi. data saya kumpulkan dengan melihat beberapa website referensi berikut: | ||
+ | *https://wijayamakmur.com/siku | ||
+ | *https://ptgaja.com/stainless-steel-201/ | ||
+ | *https://www.tokopedia.com/kairosmetal/product | ||
+ | *https://www.tokopedia.com/kingsteelid | ||
+ | dengan data yang didapatkan pada 4 website tersebut, saya berhasil mengumpulkan data sementara menjadi sebagai berikut | ||
+ | [[File:ElasLock.PNG|800px|center|]] | ||
+ | [[File:AreaLock.PNG|800px|center|]] | ||
+ | terlihat dari gambar bahwa masih banyak sekali data yang kosong (tidak memiliki input. oleh karena itu, dibutuhkan curve fitting untuk mengisi kekosongan tersebut. fungsi dari dilakukannya curve fitting adalah untuk mengetahui nilai sebuah input yang tidak diketahui sebelumnya. berikut fungsi yang akan dipanggil untuk proses curve fitting | ||
+ | |||
+ | function FuncCurveFitting | ||
+ | input Real X[:]; | ||
+ | input Real Y[size(X,1)]; | ||
+ | input Integer order=2; | ||
+ | output Real Coef[order+1]; | ||
+ | |||
+ | protected | ||
+ | Real Z[size(X,1),order+1]; | ||
+ | Real ZTr[order+1,size(X,1)]; | ||
+ | Real A[order+1,order+1]; | ||
+ | Real B[order+1]; | ||
+ | |||
+ | algorithm | ||
+ | for i in 1:size(X,1) loop | ||
+ | for j in 1:(order+1) loop | ||
+ | Z[i,j]:=X[i]^(order+1-j); | ||
+ | end for; | ||
+ | end for; | ||
+ | ZTr:=transpose(Z); | ||
+ | |||
+ | A:=ZTr*Z; | ||
+ | B:=ZTr*Y; | ||
+ | Coef:=Modelica.Math.Matrices.solve(A,B); | ||
+ | |||
+ | end FuncCurveFitting; | ||
+ | |||
+ | untuk menjalankan fungsi tersebut, tentunya kita memerlukan model untuk memanggil fungsi tersebut. berikut adalah model nya | ||
+ | |||
+ | model CurveFitting | ||
+ | parameter Real X[6]={0.000111, 0.000171, 0.000304, 0.000684, 0.000744, 0.000864}; | ||
+ | parameter Real Y[6]={179200, 239500, 429600, 963600, 1044800, 1428000}; | ||
+ | Real coef[3]; | ||
+ | |||
+ | equation | ||
+ | coef=FuncCurveFitting(X,Y,2); | ||
+ | end CurveFitting; | ||
+ | |||
+ | model tersebut dapat digunakan untuk curve fitting berkali-kali. hanya perlu menyesuaikan nilai X dan Y yang diketahui saja. sebagai contoh, code diatas merupakan code curve fitting untuk mencari besar cost per 6 meter. setelah mendapatkan nilai dari hasil curve fitting, data yang kita miliki menjadi sebagai berikut: | ||
+ | [[File:ElasLockFix.PNG|800px|center|]] | ||
+ | [[File:AreaLockFix.PNG|800px|center|]] | ||
+ | dengan demikian kita telah memiliki sejumlah data yang dapat diolah dalam proses optimasi |
Revision as of 21:11, 10 January 2021
Biodata | |
---|---|
Nama | Musyafi Albar |
NPM | 1906379094 |
musyafi.albar@ui.ac.id | |
Contents
- 1 Musyafi Albar
- 2 Catatan Minggu Pertama (11 November 2020)
- 3 Catatan Minggu kedua (18 November 2020)
- 4 Catatan Minggu ketiga (25 November 2020)
- 5 Tugas Minggu ketiga (25 November 2020)
- 6 Quiz class diagram dan flowchart Minggu keempat (2 Desember 2020)
- 7 Tugas Minggu keempat (2 Desember 2020)
- 8 Tugas Minggu Enam (16 Desember 2020)
Musyafi Albar
Perkenalkan nama saya Musyafi Albar (NPM 1906379094) biasa dipanggil Mus. Saya Adalah mahasiswa Teknik Mesin angkatan 2019 dari Fakultas Teknik Universitas Indonesia. Saya memiliki ketertarikan kepada bidang mesin karena dirasa jurusan tersebut memiliki rana yang luas untuk dunia kerjanya. Pada Pelajaran metnum sebelumnya saya telah mempelajari tentang persamaan, istilah algoritma, kurva, regresi, differensial, parsial
Catatan Minggu Pertama (11 November 2020)
Tujuan Pembelajaran
- Memahami konsep dan prinsip dasar metode numerik
- Dapat menerapkan pemahaman yang didapatkan dalam mata kuliah Metode Numerik
- Mampu menerapkan pemahaman metode numerik dalam bidang keteknikan
- Membentuk kita menjadi orang yang lebih beradab
Manfaat Belajar bagi Diri Saya Sendiri
Menurut saya, pembelajaran adalah suatu proses penambahan kualitas diri. Saya merasa dengan belajar kita bisa memahami berbagai macam hal yang dapat menambah kualitas pada diri sendiri. Hasil dari penambahan kualitas tersebut berupa pemanfaatan hal yang telah dipelajari, diaplikasikan di kehidupan nyata. Sebagai contoh kita belajar pendidikan dari sd hingga sma untuk menambah kualitas diri dan digunakan untuk menempuh belajar di Kuliah.
Komputer dalam Metode Numerik
Komputer merupakan alat hitung yang cepat. Kualitas dari komputer bergantung pada spesifikasi pembuatannya. Penggunaan dari alat tersebut juga bergantung pada pemakainya.
Tugas 1
Berikut merupakan video penjelasan aplikasi OpenModelica untuk menyelesaikan suatu Sistem Persamaan
Catatan Minggu kedua (18 November 2020)
Pembahasan
Pada kuliah pertemuan ke 2 dibahas tentang penggunaan Openmodelica
Sesi Tanya jawab :
Mengapa menggunakan openmodelica : Karena openmodelica merupakan bahasa permodolen yang gratis. Apa Perbedaan constan real dengan parameter real : untuk mengganti variabel pada simulasi jika menggunakan comand constan real diperlukan simulate ulangsedangkan dengan menggunakan comand parameter real tidak perlu simulate ulang hanya dengan mengganti variabel xnya
Penyataan Penting Openmodelica merupakan object oriented. Pada modelica specialization model digunakan untuk menyelesaikan suatu fungsi sedangankan class digunakan untuk penggabungan fungsi-fungsi. Setiap specializtion digunakan untuk tujuan yang berbeda-beda dengan mempunyai kelebihan dan kelemahan.
Tugas 2
Membuat open modecalica dengan specializtion Class persamaan aljabar simultan
function
function p input Real A[4,4]; input Real B[4]; output Real X[4]; algorithm X:=Modelica.Math.Matrices.solve(A,B); end p;
class
class o parameter Real P[4,4]=[8,-9,1,-8; -3,-1,5,4; -2,-1,-3,8; -2,-8,-1,2]; Q[4]={80,7,-30,18}; Real X[4]; equation X=o(P,Q); end SPL;
Video tugas
Catatan Minggu ketiga (25 November 2020)
Pengaplikasian dalam Open Modelica, kita akan membuat code untuk menyelesaikan persamaan 9.12 pada buku Chapra yaitu mengenai eliminasi Naïve Gauss. Pseudocode untuk eliminasi Naïve Gauss diberikan pada Fig.9.4:
pseudocode dibuat kedalam bahasa Open Modelica
....
Penggunaan code dengan menyelesaikan
....
Tugas Minggu ketiga (25 November 2020)
menyelesaikan permalasahan truss berikut:
Class class Trusses_Tugas3_d29 parameter Integer N=8; //Global matrice = 2*points connected parameter Real A=0.001; //m^2 parameter Real E=200e9; //Pa Real G[N,N]; //global Real Ginitial[N,N]; //global Real Sol[N]; //global displacement Real X[N]={0,0,-1035.2762,-3863.7033,0,0,-1035.2762,-3863.7033}; Real R[N]; //global reaction force Real SolMat[N,1]; Real XMat[N,1]; //boundary condition Integer b1=1; Integer b2=3; //truss 1 parameter Real X1=0; //degree between trusses Real k1=A*E/1; Real K1[4,4]; //stiffness matrices Integer p1a=1; Integer p1b=2; Real G1[N,N]; //truss 2 parameter Real X2=0; //degree between trusses Real k2=A*E/1; Real K2[4,4]; //stiffness matrices Integer p2a=2; Integer p2b=3; Real G2[N,N]; //truss 3 parameter Real X3=90; //degree between trusses Real k3=A*E/1.25; Real K3[4,4]; //stiffness matrices Integer p3a=2; Integer p3b=4; Real G3[N,N]; //truss 4 parameter Real X4=90+38.6598; //degree between trusses Real k4=A*E/1.6; Real K4[4,4]; //stiffness matrices Integer p4a=1; Integer p4b=4; Real G4[N,N]; //truss 5 parameter Real X5=90-38.6598; //degree between trusses Real k5=A*E/1.6; Real K5[4,4]; //stiffness matrices Integer p5a=3; Integer p5b=4; Real G5[N,N]; /* for each truss, ensure pXa is lower then pXb (X represents truss element number) */ algorithm //creating global matrice K1:=Stiffness_Matrices(X1); G1:=k1*Local_Global(K1,N,p1a,p1b); K2:=Stiffness_Matrices(X2); G2:=k2*Local_Global(K2,N,p2a,p2b); K3:=Stiffness_Matrices(X3); G3:=k3*Local_Global(K3,N,p3a,p3b); K4:=Stiffness_Matrices(X4); G4:=k4*Local_Global(K4,N,p4a,p4b); K5:=Stiffness_Matrices(X5); G5:=k5*Local_Global(K5,N,p5a,p5b); G:=G1+G2+G3+G4+G5; Ginitial:=G; //implementing boundary condition for i in 1:N loop G[2*b1-1,i]:=0; G[2*b1,i]:=0; G[2*b2-1,i]:=0; G[2*b2,i]:=0; end for; G[2*b1-1,2*b1-1]:=1; G[2*b1,2*b1]:=1; G[2*b2-1,2*b2-1]:=1; G[2*b2,2*b2]:=1; //solving displacement Sol:=Gauss_Jordan(N,G,X); //solving reaction force SolMat:=matrix(Sol); XMat:=matrix(X); R:=Reaction_Trusses(N,Ginitial,SolMat,XMat); end Trusses_Tugas3_d29; |
Function Stiffness_Matrices function Stiffness_Matrices input Real A; Real Y; output Real X[4,4]; Real float_error = 10e-10; final constant Real pi=2*Modelica.Math.asin(1.0); algorithm Y:=A/180*pi; X:=[(Modelica.Math.cos(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y),-(Modelica.Math.cos(Y))^2,-Modelica.Math.cos(Y)*Modelica.Math.sin(Y); Modelica.Math.cos(Y)*Modelica.Math.sin(Y),(Modelica.Math.sin(Y))^2,-Modelica.Math.cos(Y)*Modelica.Math.sin(Y),-(Modelica.Math.sin(Y))^2; -(Modelica.Math.cos(Y))^2,-Modelica.Math.cos(Y)*Modelica.Math.sin(Y),(Modelica.Math.cos(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y); -Modelica.Math.cos(Y)*Modelica.Math.sin(Y),-(Modelica.Math.sin(Y))^2,Modelica.Math.cos(Y)*Modelica.Math.sin(Y),(Modelica.Math.sin(Y))^2]; for i in 1:4 loop for j in 1:4 loop if abs(X[i,j]) <= float_error then X[i,j] := 0; end if; end for; end for; end Stiffness_Matrices; |
Function Gauss-Jordan function Gauss_Jordan input Integer N; input Real A[N,N]; input Real B[N]; output Real X[N]; Real float_error = 10e-10; algorithm X:=Modelica.Math.Matrices.solve(A,B); for i in 1:N loop if abs(X[i]) <= float_error then X[i] := 0; end if; end for; end Gauss_Jordan; |
Function Reaction_Trusses function Reaction_Trusses input Integer N; input Real A[N,N]; input Real B[N,1]; input Real C[N,1]; Real X[N,1]; output Real Sol[N]; Real float_error = 10e-10; algorithm X:=A*B-C; for i in 1:N loop if abs(X[i,1]) <= float_error then X[i,1] := 0; end if; end for; for i in 1:N loop Sol[i]:=X[i,1]; end for; end Reaction_Trusses; |
Function Local_Global function Local_Global input Real Y[4,4]; input Integer B; input Integer p1; input Integer p2; output Real G[B,B]; algorithm for i in 1:B loop for j in 1:B loop G[i,j]:=0; end for; end for; G[2*p1,2*p1]:=Y[2,2]; G[2*p1-1,2*p1-1]:=Y[1,1]; G[2*p1,2*p1-1]:=Y[2,1]; G[2*p1-1,2*p1]:=Y[1,2]; G[2*p2,2*p2]:=Y[4,4]; G[2*p2-1,2*p2-1]:=Y[3,3]; G[2*p2,2*p2-1]:=Y[4,3]; G[2*p2-1,2*p2]:=Y[3,4]; G[2*p2,2*p1]:=Y[4,2]; G[2*p2-1,2*p1-1]:=Y[3,1]; G[2*p2,2*p1-1]:=Y[4,1]; G[2*p2-1,2*p1]:=Y[3,2]; G[2*p1,2*p2]:=Y[2,4]; G[2*p1-1,2*p2-1]:=Y[1,3]; G[2*p1,2*p2-1]:=Y[2,3]; G[2*p1-1,2*p2]:=Y[1,4]; end Local_Global; |
Quiz class diagram dan flowchart Minggu keempat (2 Desember 2020)
Tugas Minggu keempat (2 Desember 2020)
Penyelesaikan permasalahan truss 3D dengan membuat class diagram, flowchart, dan penyelesaiannya pada Open Modelica.
class diagram dan flowchart
Open Modelica langkah pertama membuat class berisi data yang diketahui dan perhitungan-perhitungannya
Class class Tugas parameter Real [:,9] inisiasi = [1, 1, 2, -0.8, 0, -0.6, 15e-4, 70e9, 2.5; 2, 1, 3, -0.8, -0.6, 0, 15e-4, 70e9, 2.5; 3, 1, 4, -0.8, 0, 0.6, 15e-4, 70e9, 2.5]; parameter Integer [:,2] node = [1, 2; 1, 3; 1, 4]; parameter Integer y = size(node,1); parameter Integer x = 3*(size(node_load,1)); parameter Integer z = size(Boundary,1); parameter Integer [:] Boundary = {2,3,4}; parameter Real [:,4] node_load = [1, 0, -5000, 0; 2, 0, 0, 0; 3, 0, 0, 0; 4, 0, 0, 0]; parameter Real [x] load = {0,-5000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; Real [y] k; Real [y,6,6] Ke; Real [y,x,x] Kg; Real [x,x] KgTot; Real [x,x] KgB; Real [x] U; Real [x] R; equation k = {(inisiasi[i,7] * inisiasi[i,8] / inisiasi[i,9]) for i in 1:y}; Ke = StiffnessMatrixElement(inisiasi); Kg = StiffnessMatrixGlobal(node, x, y, Ke); KgTot = SumStiffnessMatrixGlobal(x, y, Kg); KgB = BoundaryStiffnessMatrixGlobal(x, z, KgTot, Boundary); U = GaussJordan(x, KgB, load); R = ReactionForce(x, KgTot, U, load); end Tugas; |
Selanjutnya membuat function kekakuan dalam class menggunakan rumus k=AE/L di setiap batang
Function StiffnessMatrixElement function StiffnessMatrixElement input Real [:,9] inisiasi_mat; output Real [size(inisiasi_mat,1),6,6] Ke_mat; protected Real cos_x; Real cos_y; Real cos_z; Real [6] StiffTrig; Real [6,6] StiffTrans; Real [size(inisiasi_mat,1)] k_vec; algorithm k_vec := {(inisiasi_mat[i,7] * inisiasi_mat[i,8] / inisiasi_mat[i,9]) for i in 1:size(inisiasi_mat,1)}; // Finding stiffness matrix of each element member for i in 1:size(inisiasi_mat,1) loop // Clearing the matrices StiffTrig := zeros(6); StiffTrans := zeros(6,6); // Converting degrees to radians cos_x := inisiasi_mat[i,4]; cos_y := inisiasi_mat[i,5]; cos_z := inisiasi_mat[i,6]; // {cos^2, sin^2, sincos} StiffTrig := {(cos_x)^2, (cos_y)^2, (cos_z)^2, (cos_x*cos_y), (cos_x*cos_z), (cos_y*cos_z)}; // Construct stiffness transformation matrix StiffTrans := [ StiffTrig[1], StiffTrig[4], StiffTrig[5], -1*StiffTrig[1], -1*StiffTrig[4], -1*StiffTrig[5]; StiffTrig[4], StiffTrig[2], StiffTrig[6], -1*StiffTrig[4], -1*StiffTrig[2], -1*StiffTrig[6]; StiffTrig[5], StiffTrig[6], StiffTrig[3], -1*StiffTrig[5], -1*StiffTrig[6], -1*StiffTrig[3]; -1*StiffTrig[1], -1*StiffTrig[4], -1*StiffTrig[5], StiffTrig[1], StiffTrig[4], StiffTrig[5]; -1*StiffTrig[4], -1*StiffTrig[2], -1*StiffTrig[6], StiffTrig[4], StiffTrig[2], StiffTrig[6]; -1*StiffTrig[5], -1*StiffTrig[6], -1*StiffTrig[3], StiffTrig[5], StiffTrig[6], StiffTrig[3]]; // Multiply in stiffness constant of element, add final stiffness matrix to Ke_mat for m in 1:6 loop for n in 1:6 loop Ke_mat[i,m,n] := k_vec[i] * StiffTrans[m,n]; end for; end for; end for; end StiffnessMatrixElement; |
Setelah itu matriks 6x6 K tersebut akan dibuat menjadi matriks 12x12 sesuai dengan jumlah batang (3) * jumlah node (4). Ini disebut matriks kekakuan global (Kg).
Function StiffnessMatrixGlobal function StiffnessMatrixGlobal input Integer [:,2] n; input Integer x; input Integer y; input Real [y,6,6] Ke_mat; output Real [y,x,x] Kg_mat; algorithm for i in 1:y loop for a in 1:x loop for b in 1:x loop Kg_mat[i,a,b]:=0; end for; end for; end for; for i in 1:y loop Kg_mat[i,3*n[i,1],3*n[i,1]]:=Ke_mat[i,3,3]; Kg_mat[i,3*n[i,1],3*n[i,1]-1]:=Ke_mat[i,3,2]; Kg_mat[i,3*n[i,1],3*n[i,1]-2]:=Ke_mat[i,3,1]; Kg_mat[i,3*n[i,1]-1,3*n[i,1]]:=Ke_mat[i,2,3]; Kg_mat[i,3*n[i,1]-1,3*n[i,1]-1]:=Ke_mat[i,2,2]; Kg_mat[i,3*n[i,1]-1,3*n[i,1]-2]:=Ke_mat[i,2,1]; Kg_mat[i,3*n[i,1]-2,3*n[i,1]]:=Ke_mat[i,1,3]; Kg_mat[i,3*n[i,1]-2,3*n[i,1]-1]:=Ke_mat[i,1,2]; Kg_mat[i,3*n[i,1]-2,3*n[i,1]-2]:=Ke_mat[i,1,1]; Kg_mat[i,3*n[i,2],3*n[i,2]]:=Ke_mat[i,6,6]; Kg_mat[i,3*n[i,2],3*n[i,2]-1]:=Ke_mat[i,6,5]; Kg_mat[i,3*n[i,2],3*n[i,2]-2]:=Ke_mat[i,6,4]; Kg_mat[i,3*n[i,2]-1,3*n[i,2]]:=Ke_mat[i,5,6]; Kg_mat[i,3*n[i,2]-1,3*n[i,2]-1]:=Ke_mat[i,5,5]; Kg_mat[i,3*n[i,2]-1,3*n[i,2]-2]:=Ke_mat[i,5,4]; Kg_mat[i,3*n[i,2]-2,3*n[i,2]]:=Ke_mat[i,4,6]; Kg_mat[i,3*n[i,2]-2,3*n[i,2]-1]:=Ke_mat[i,4,5]; Kg_mat[i,3*n[i,2]-2,3*n[i,2]-2]:=Ke_mat[i,4,4]; Kg_mat[i,3*n[i,2],3*n[i,1]]:=Ke_mat[i,6,3]; Kg_mat[i,3*n[i,2],3*n[i,1]-1]:=Ke_mat[i,6,2]; Kg_mat[i,3*n[i,2],3*n[i,1]-2]:=Ke_mat[i,6,1]; Kg_mat[i,3*n[i,2]-1,3*n[i,1]]:=Ke_mat[i,5,3]; Kg_mat[i,3*n[i,2]-1,3*n[i,1]-1]:=Ke_mat[i,5,2]; Kg_mat[i,3*n[i,2]-1,3*n[i,1]-2]:=Ke_mat[i,5,1]; Kg_mat[i,3*n[i,2]-2,3*n[i,1]]:=Ke_mat[i,4,3]; Kg_mat[i,3*n[i,2]-2,3*n[i,1]-1]:=Ke_mat[i,4,2]; Kg_mat[i,3*n[i,2]-2,3*n[i,1]-2]:=Ke_mat[i,4,1]; Kg_mat[i,3*n[i,1],3*n[i,2]]:=Ke_mat[i,3,6]; Kg_mat[i,3*n[i,1],3*n[i,2]-1]:=Ke_mat[i,3,5]; Kg_mat[i,3*n[i,1],3*n[i,2]-2]:=Ke_mat[i,3,4]; Kg_mat[i,3*n[i,1]-1,3*n[i,2]]:=Ke_mat[i,2,6]; Kg_mat[i,3*n[i,1]-1,3*n[i,2]-1]:=Ke_mat[i,2,5]; Kg_mat[i,3*n[i,1]-1,3*n[i,2]-2]:=Ke_mat[i,2,4]; Kg_mat[i,3*n[i,1]-2,3*n[i,2]]:=Ke_mat[i,1,6]; Kg_mat[i,3*n[i,1]-2,3*n[i,2]-1]:=Ke_mat[i,1,5]; Kg_mat[i,3*n[i,1]-2,3*n[i,2]-2]:=Ke_mat[i,1,4]; end for; end StiffnessMatrixGlobal; |
Selanjutnya, matriks kekakuan global setiap batang dijumlahkan untuk mendapat matriks kekakuan global total(KgTot)
Function SumStiffnessMatrixGlobal function SumStiffnessMatrixGlobal input Integer x; input Integer y; input Real [y,x,x] Kg_mat; output Real [x,x] KgTot_mat; algorithm for a in 1:x loop for b in 1:x loop KgTot_mat[a,b] := sum(Kg_mat [:,a,b]); end for; end for; end SumStiffnessMatrixGlobal; |
Kemudian boundary diterapkan pada matriks kekakuan global total. Pada kasus ini, node 2,3, dan 4 merupakan pinned. Sehingga U2X=U2Y=U2Z=U3X=U3Y=U3Z=U4X=U4Y=U4Z=0.
Function BoundaryStiffnessMatrixGlobal function BoundaryStiffnessMatrixGlobal input Integer x; input Integer z; input Real [x,x] KgTot_met; input Integer[z] Boundary_met; output Real [x,x] KgB_met; algorithm for a in 1:x loop for b in 1:x loop KgB_met[a,b] := KgTot_met [a,b]; end for; end for; for i in 1:x loop for a in 1:z loop for b in 0:2 loop KgB_met[3*(Boundary_met[a])-b,i]:=0; end for; end for; end for; for a in 1:z loop for b in 0:2 loop KgB_met[3*Boundary_met[a]-b,3*Boundary_met[a]-b]:=1; end for; end for; end BoundaryStiffnessMatrixGlobal; |
Untuk mencari nilai displacement(U) lainnya menggunakan eliminasi Gauss Jordan dengan persamaan XU=F. Dengan X adalah matriks K global yang sudah menerapkan boundary(KgB) dan F adalah eksternal load.
Function GaussJordan function GaussJordan input Integer x; input Real [x,x] KgB_met; input Real [x] load_met; output Real [x] U_met; protected Real float_error = 10e-10; algorithm U_met:=Modelica.Math.Matrices.solve(KgB_met,load_met); for i in 1:x loop if abs(U_met[i]) <= float_error then U_met[i] := 0; end if; end for; end GaussJordan; |
Sedangkan untuk mencari reaction menggunakan persamaan R=Kg*U - F.
Function ReactionForce function ReactionForce input Integer x; input Real [x,x] KgTot_met; input Real [x] U_met; input Real [x] load_met; output Real [x] R_met; algorithm R_met := (KgTot_met*U_met)-load_met; end ReactionForce; |
Function-function tersebut akan dipanggil ke dalam sebuah class untuk penyelesaiannya. Pada class akan diinput data-data yang telah docari pada langkah pertama. Dan didapat
Tugas Minggu Enam (16 Desember 2020)
Tema : Aplikasi Metoda Numerik dalam Optimasi Desain Struktur Rangka Sederhana
Sinopsis Tugas Besar
Dalam tugas besar ini kami diminta untuk mendesain rangka sesuai yang tertera dibawah dengan menggunakan rangka yang optimal dan cost yang minimum
Adapun Hal yang Harus Diperhitungkan sebagai Plotting
- A Harga material di dapat dari nilai optimum defleksi dan cross section
- B Material (Elastisitas properti)
- C Area Cross Section Truss (L profile/truss siku), luas cross section sebagai X
- D Defleksi sebagai Y
Perhitungan Displacement, Reaction Force, Stress, dan Safety Factor
model Trusses3DTugasBesar
//define initial variable parameter Integer Points=size(P,1); //Number of Points parameter Integer Trusses=size(C,1); //Number of Trusses parameter Real Yield=292e6; //Yield Strength (Pa) parameter Real Area=0.000224; //Area L Profile (Dimension=0.03, Thickness=0,004) (m2) parameter Real Elas=197e9; //Elasticity SS 201 (Pa) //define connection parameter Integer C[:,2]=[1,5; 2,6; 3,7; 4,8; 5,6; //1st floor 6,7; //1st floor 7,8; //1st floor 5,8; //1st floor 5,9; 6,10; 7,11; 8,12; 9,10; //2nd floor 10,11;//2nd floor 11,12;//2nd floor 9,12; //2nd floor 9,13; 10,14; 11,15; 12,16; 13,14;//3rd floor 14,15;//3rd floor 15,16;//3rd floor 13,16];//3rd floor //define coordinates (please put orderly) parameter Real P[:,6]=[0.3,-0.375,0,1,1,1; //1 -0.3,-0.375,0,1,1,1; //2 -0.3,0.375,0,1,1,1; //3 0.3,0.375,0,1,1,1; //4 0.3,-0.375,0.6,0,0,0; //5 -0.3,-0.375,0.6,0,0,0; //6 -0.3,0.375,0.6,0,0,0; //7 0.3,0.375,0.6,0,0,0; //8 0.3,-0.375,1.2,0,0,0; //9 -0.3,-0.375,1.2,0,0,0; //10 -0.3,0.375,1.2,0,0,0; //11 0.3,0.375,1.2,0,0,0; //12 0.3,-0.375,1.8,0,0,0; //13 -0.3,-0.375,1.8,0,0,0; //14 -0.3,0.375,1.8,0,0,0; //15 0.3,0.375,1.8,0,0,0]; //16 //define external force (please put orderly) parameter Real F[Points*3]={0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,-500, 0,0,-1000, 0,0,-1000, 0,0,-500}; //solution Real displacement[N], reaction[N]; Real check[3]; Real stress1[Trusses]; Real safety[Trusses]; Real dis[3]; Real Str[3]; protected parameter Integer N=3*Points; Real q1[3], q2[3], g[N,N], G[N,N], G_star[N,N], id[N,N]=identity(N), cx, cy, cz, L, X[3,3]; Real err=10e-10, ers=10e-4;
algorithm
//Creating Global Matrix G:=id; for i in 1:Trusses loop for j in 1:3 loop q1[j]:=P[C[i,1],j]; q2[j]:=P[C[i,2],j]; end for; //Solving Matrix L:=Modelica.Math.Vectors.length(q2-q1); cx:=(q2[1]-q1[1])/L; cy:=(q2[2]-q1[2])/L; cz:=(q2[3]-q1[3])/L; X:=(Area*Elas/L)*[cx^2,cx*cy,cx*cz; cy*cx,cy^2,cy*cz; cz*cx,cz*cy,cz^2]; //Transforming to global matrix g:=zeros(N,N); for m,n in 1:3 loop g[3*(C[i,1]-1)+m,3*(C[i,1]-1)+n]:=X[m,n]; g[3*(C[i,2]-1)+m,3*(C[i,2]-1)+n]:=X[m,n]; g[3*(C[i,2]-1)+m,3*(C[i,1]-1)+n]:=-X[m,n]; g[3*(C[i,1]-1)+m,3*(C[i,2]-1)+n]:=-X[m,n]; end for; G_star:=G+g; G:=G_star; end for; //Implementing boundary for x in 1:Points loop if P[x,4] <> 0 then for a in 1:Points*3 loop G[(x*3)-2,a]:=0; G[(x*3)-2,(x*3)-2]:=1; end for; end if; if P[x,5] <> 0 then for a in 1:Points*3 loop G[(x*3)-1,a]:=0; G[(x*3)-1,(x*3)-1]:=1; end for; end if; if P[x,6] <> 0 then for a in 1:Points*3 loop G[x*3,a]:=0; G[x*3,x*3]:=1; end for; end if; end for; //Solving displacement displacement:=Modelica.Math.Matrices.solve(G,F); //Solving reaction reaction:=(G_star*displacement)-F; //Eliminating float error for i in 1:N loop reaction[i]:=if abs(reaction[i])<=err then 0 else reaction[i]; displacement[i]:=if abs(displacement[i])<=err then 0 else displacement[i]; end for; //Checking Force check[1]:=sum({reaction[i] for i in (1:3:(N-2))})+sum({F[i] for i in (1:3:(N-2))}); check[2]:=sum({reaction[i] for i in (2:3:(N-1))})+sum({F[i] for i in (2:3:(N-1))}); check[3]:=sum({reaction[i] for i in (3:3:N)})+sum({F[i] for i in (3:3:N)}); for i in 1:3 loop check[i] := if abs(check[i])<=ers then 0 else check[i]; end for; //Calculating stress in each truss for i in 1:Trusses loop for j in 1:3 loop q1[j]:=P[C[i,1],j]; q2[j]:=P[C[i,2],j]; dis[j]:=abs(displacement[3*(C[i,1]-1)+j]-displacement[3*(C[i,2]-1)+j]); end for; //Solving Matrix L:=Modelica.Math.Vectors.length(q2-q1); cx:=(q2[1]-q1[1])/L; cy:=(q2[2]-q1[2])/L; cz:=(q2[3]-q1[3])/L; X:=(Elas/L)*[cx^2,cx*cy,cx*cz; cy*cx,cy^2,cy*cz; cz*cx,cz*cy,cz^2]; Str:=(X*dis); stress1[i]:=Modelica.Math.Vectors.length(Str); end for; //Safety factor for i in 1:Trusses loop if stress1[i]>0 then safety[i]:=Yield/stress1[i]; else safety[i]:=0; end if; end for;
end Trusses3DTugasBesar;
Perhitungan Rasio Perbandingan Safety Factor dan Biaya
selanjutnya diperlukan pendataan guna mendapatkan banyak data yang diperlukan dalam proses curve fitting, yang nantinya akan digunakan untuk optimasi. data saya kumpulkan dengan melihat beberapa website referensi berikut:
- https://wijayamakmur.com/siku
- https://ptgaja.com/stainless-steel-201/
- https://www.tokopedia.com/kairosmetal/product
- https://www.tokopedia.com/kingsteelid
dengan data yang didapatkan pada 4 website tersebut, saya berhasil mengumpulkan data sementara menjadi sebagai berikut
terlihat dari gambar bahwa masih banyak sekali data yang kosong (tidak memiliki input. oleh karena itu, dibutuhkan curve fitting untuk mengisi kekosongan tersebut. fungsi dari dilakukannya curve fitting adalah untuk mengetahui nilai sebuah input yang tidak diketahui sebelumnya. berikut fungsi yang akan dipanggil untuk proses curve fitting
function FuncCurveFitting
input Real X[:]; input Real Y[size(X,1)]; input Integer order=2; output Real Coef[order+1];
protected Real Z[size(X,1),order+1]; Real ZTr[order+1,size(X,1)]; Real A[order+1,order+1]; Real B[order+1];
algorithm
for i in 1:size(X,1) loop for j in 1:(order+1) loop Z[i,j]:=X[i]^(order+1-j); end for; end for; ZTr:=transpose(Z);
A:=ZTr*Z; B:=ZTr*Y; Coef:=Modelica.Math.Matrices.solve(A,B);
end FuncCurveFitting;
untuk menjalankan fungsi tersebut, tentunya kita memerlukan model untuk memanggil fungsi tersebut. berikut adalah model nya
model CurveFitting
parameter Real X[6]={0.000111, 0.000171, 0.000304, 0.000684, 0.000744, 0.000864}; parameter Real Y[6]={179200, 239500, 429600, 963600, 1044800, 1428000}; Real coef[3];
equation
coef=FuncCurveFitting(X,Y,2);
end CurveFitting;
model tersebut dapat digunakan untuk curve fitting berkali-kali. hanya perlu menyesuaikan nilai X dan Y yang diketahui saja. sebagai contoh, code diatas merupakan code curve fitting untuk mencari besar cost per 6 meter. setelah mendapatkan nilai dari hasil curve fitting, data yang kita miliki menjadi sebagai berikut:
dengan demikian kita telah memiliki sejumlah data yang dapat diolah dalam proses optimasi