Difference between revisions of "Yogi Gunawan Atmawijaya"
YogiGunawan (talk | contribs) (→Minggu 3 (Rabu, 25 November 2020)) |
YogiGunawan (talk | contribs) (→Minggu 3 (Rabu, 25 November 2020)) |
||
Line 259: | Line 259: | ||
Pseudocodenya adalah sebagai berikut : | Pseudocodenya adalah sebagai berikut : | ||
− | '''NaiveGauss''' | + | '''NaiveGauss.mo''' |
function NaiveGauss | function NaiveGauss | ||
Revision as of 03:27, 2 December 2020
Biodata
Nama : Yogi Gunawan Atmawijaya
NPM : 1806201005
TTL : 27 Maret 2000
Tempat Tinggal : Tangerang
Saya adalah mahasiswa FTUI angkatan 2018 jurusan Teknik Mesin.
Saya memilih jurusan teknik mesin karena setelah melihat pelajaran-pelajaran di jurusan ini cocok dengan minat saya dan saya yakin saya bisa kuliah dengan baik di Teknik Mesin
Contents
Metode Numerik
Pelajaran yang sudah saya pelajari di setengah semester pertama pada mata kuliah metode numerik yang diajar oleh Dr. Ir. Engkos Achmad Kosasih M.T. adalah :
- macam-macam error
- turunan numerik
- metode bisection
- metode newton-raphson
- metode secant
- deret mc laurint.
Minggu 1 (Rabu, 11 November 2020)
Ada 4 tujuan metode numerik
- 1. memahami konsep dengan dengan baik tentang dasar-dasar metode numerik. bila dasarnya tidak paham konsep dengan baik, maka tidak akan mengerti.
- 2. mampu menerapkan pemahaman konsep tersebut didalam permodelan numerik
- 3. mampu menerapkan metode numerik dipersoalan keteknikan
- 4. untuk mendapat nilai tambah membuat kita menajadi manusia yang beradab
Pada diskusi hari ini, Rabu, 11 Nov 2020, saya mempelejari bahwa komputer walaupun bisa memudahkan pekerjaan kita tetapi komputer juga mempunyai keterbatasan. Jadi sejatinya kita tidak dapat mengandalkan komputer sepenuhnya. Dan sebagai manusia kita juga tidak luput dari ketidaktahuan karena sejatinya hanya Tuhan yang Maha Tahu
Tugas 1
Untuk tugas minggu 1 kami diminta untuk melihat tutorial Open Modelica dari youtube. Setelah melihat tutorial tersebut kami membuat video tutorial singkat. Berikut ini adalah video tutorial OpenModelica Basic
Minggu 2 (Rabu, 18 November 2020)
Sebelum dijelaskan materi, kami diminta mereview hal-hal apa saja yang sudah kami pelajari diminggu 1 dan apa saja hal yang sudah dicoba untuk tugas 1 yaitu memepelajari dasar dari Open Modelica. Pak Dai menjelaskan kenapa Pak Dai memilih aplikasi open modelica dibandingkan program lain untuk tools belajar kami. Pak Dai menjelaskan bahwa aplikasi Open Modelica ini sebenarnya bukan aplikasi programing, melainkan aplikasi untuk modelling. Open Modelica tidak mempunyai bahasa program sendiri, itu kenapa proses dari simulasi Open Modelica ini lebih lama dibandingkan aplikasi lain. Open modelica memproses data lebih lama dikarenakan Open Modelica harus menerjemahkan perintah yang kita tulis menjadi bahasa C++, setelah itu baru data bisa diproses.
Setelah itu kami diminta mencoba membuat suatu file class yang digunakan untuk "memanggil" suatu fungsi dari file function. Kami membuat file function sebagai berikut :
FungsiTambahX1.mo
function FungsiTambahX1 input Real x; output Real y; algorithm y:=x+10; end FungsiTambahX1;
Setelah itu kami membuat file class untuk "memanggil" fungsi dari file function diatas. Pseudocodenya sebagai berikut :
Panggil.mo
class Panggil parameter Real x1=5; Real hasil10tambahx1; equation hasil10tambahx1=FungsiTambahX1(x1); end Panggil;
Dijelaskan dengan memanggil file function diatas, maka pada saat di file class, inputnya menjadi x1 dimana x1 tersebut mempunyai nilai dan nilai tersebut akan menjadi input dari persamaan yang masukan di file FungsiTambahX1.mo
Tugas 2
Untuk tugas 2, kami diminta untuk membuat suatu fungsi panggil seperti yang dicontohkan pada saat kelas menggunakan persamaan aljabar simultan dan variable array. Persamaan Aljabar Simultan sendiri adalah persamaan yang kompleks karena memiliki banyak variable yang perlu dicari nilainya. Variable array adalah variable yang didalamnya memiliki beberapa data nilai. Pada tugas ini saya mencoba membuatnya menggunakan 3 persamaan sederhana yang memiliki 3 variable yang harus dicari nilainya. persamaannya adalah sebagai berikut :
Lalu saya buat file function sebagai berikut :
Gauss_Function.mo
function Gauss_Function input Real P[3,3]; input Real Q[3]; output Real R[3]; algorithm R:=Modelica.Math.Matrices.solve(P,Q); end Gauss_Function;
Dan saya membuat file class sebagai berikut :
Gauss_Class.mo
class Gauss_Class parameter Real A[3,3]=[2,5,3;3,4,2;1,3,1]; parameter Real B[3]={1,-3,2}; Real X[3]; equation X=Gauss_Function(A,B); end Gauss_Class;
Berikut adalah video penjelasan tentang pembuatan 2 file diatas :
Minggu 3 (Rabu, 25 November 2020)
Pada minggu ketiga, kami dijelaskan tentang pseudocode gauss elimination secara manual. Pak Dai menginginkan kami bisa membuat pseudocode sendiri tanpa menggunakan fungsi yang sudah disediakan dari OpenModelica itu sendiri. Jadi pada saat dikelas kami dijelaskan oleh Christo. Christo adalah salah satu mahasiswa yang juga mengambil mata kuliah metode numerik yang diajar oleh pak Dai. Christo menjelaskan dengan sangat jelas psudocode untuk gauss. Pseudocode dari gauss jordan berdasarkan apa yang sudah Christo jelaskan adalah sebagai berikut :
GaussJordan.mo
function GaussJordan input Real [:,:] A; output Real [:,:] B; protected // untuk local variable Integer h = 1; //pivot row Integer k = 1; //pivot coloumn Integer m = size(A,1); //Number of row Integer n = size(A,2); //Number of column Integer c = 0; Integer max_row; // Row index of max number in pivot column Real [:] pivot_column; Real [:] pivot_row; Real [:,:] temp_array; Real r; Real float_error = 10e-10; algorithm //fungsi input A dan output B B := A; while h <= m and k <= n loop for i in 1 : m loop for j in 1 : n loop if abs(B[i,j]) <= float_error then B[i,j] := 0; end if; end for; end for; //Finding pivot pivot_column:= {B[i,h] for i in h:m}; //Mencari baris terbawah yang mempunyai nilai pivot tertinggi c:=h-1; for element in pivot_column loop c:= c+1; if abs(element)== max(abs(pivot_column)) then max_row :=c; end if; end for; //Jika tidak ada pivot di kolom ini, pindah ke kolom selanjutnya if B[max_row,k] == 0 then k:=k+1; else // tukar row h - max_row temp_array := B; temp_array[h] := B[max_row]; temp_array[max_row] := B[h]; B:= temp_array; //devide pivot row by pivot number B[h] := B[h]/B[h,k]; for i in (h+1) :m loop r := B[i,k]/B[h,k]; B[i,k]:=0; for j in (k+1) : n loop B[i,j] := B[i,j]-B[h,j] * r; end for; end for; //move ke pivot kolom dan row selanjutnya h := h+1; k := k+1; end if; end while; // proses dari kanan atas h :=m; k :=n; while h >=1 and k>=1 loop //dealing with error for i in 1:m loop for j in 1:n loop if abs(B[i,j]) <=float_error then B[i,j]:=0; end if; end for; end for; //finding pivot pivot_row := {B[h,i] for i in 1:k}; //Get position index k of pivot c := 0; for element in pivot_row loop c := c+1; if element <> 0 then break; end if; end for; k:= c; // no pivot in this row, move to next row if B[h,k] == 0 then h:= h-1; else //perform row operatation for i in 1:(h-1) loop r := B[i,k]; B[i] := B[i] - B[h] *r; end for; //move to next pivot row dan column h:=h+1; k:=k+1; end if; end while; end GaussJordan;
Lalu kami diminta untuk membuat pseudocode open modelica dari suatu pseudocode matlab yang ada dibuku yaitu Fig. 9.4 :
Pseudocodenya adalah sebagai berikut :
NaiveGauss.mo
function NaiveGauss input Real [3,3] A; input Real [3] B; output Real [3] x; protected Real [3,3] a; Real [3] b; Integer m = size(A,1); // kolom Integer n = size(A,2); // baris Real k = 1; Real i = 1; Real j = 1; Real factor = 1; Real sum = 1; algorithm // Transfer input matrix (A,B) into variables (a,b) a := A; b := B; // Forward Elimination for k in 1:(n-1) loop for i in (k+1):n loop factor := a[i,k] / a[k,k]; for j in (k+1):n loop a[i,j] := a[i,j] - (factor * a[k,j]); end for; b[i] := b[i] - (factor * b[k]); end for; end for; // Back Substitution x[n] := b[n] / a[n,n]; for i in (n-1):(-1) loop sum := b[i]; for j in (i+1):n loop sum := sum - (a[i,j] * x[j]); end for; x[i] := sum / a[i,i]; end for; end NaiveGauss;
Lalu pseudocode tersebut digunakan untuk menyelesaikan persamaan example 9.5 dan penyelesaiannya adalah sebagai berikut :
Ex9_5.mo
class Ex9_5 parameter Real A[3,3]=[3,-0.1,-0.2; 0.1,7,-0.3; 0.3,-0.2,10]; parameter Real B[3]={7.85,-19.3,71.4}; Real x[3]; equation x=NaiveGauss(A,B); end Ex9_5;
Dari class tersebut disimulate dan didapatkan hasil sebagai berikut :