Difference between revisions of "Report Tugas Kelompok 4 : Metode Numerik 2019"

From ccitonlinewiki
Jump to: navigation, search
(Optimasi)
(Optimasi)
Line 64: Line 64:
  
  
 +
<nowiki>
 
     import numpy as np
 
     import numpy as np
 
     from scipy.optimize import minimize
 
     from scipy.optimize import minimize
Line 152: Line 153:
 
     print ('drag force optimal = '+str(dragopt))
 
     print ('drag force optimal = '+str(dragopt))
 
     print ('lift force optimal = '+str(liftopt))
 
     print ('lift force optimal = '+str(liftopt))
 +
</nowiki>
  
 
Kemudian setelah program dijalan didapatkan hasil sebagai berikut:
 
Kemudian setelah program dijalan didapatkan hasil sebagai berikut:

Revision as of 23:24, 8 December 2019

Anggota Kelompok:

  • Fikridiya Bagusrana (1706036154)
  • Rifky Ramadhan Prakoso (1706036330)
  • Mochamad Farhan Zidny (1706986391)
  • Andika Ridwan Pratama (1706986302)

Tugas 1

Berikut adalah governing equation pada mobil yang memiliki percepatan, gesekan, dan hambatan dengan udara.

Sebuah mobil memiliki 3 gaya yang bekerja padanya yaitu:

  • F = m*a
  • F gesek = m*g*cf
  • F hambat = 0.5*cd*rho*area*vt^2

Dengan membagi ketiga gaya tersebut dengan massa didapatkan percepatan total

v'(t)= (F - (F gesek + F hambat))/m

Kemudian apabila disubsitusikan ke turunan dari kecepatan terhadap waktu

v'(t)= v(t)/t

dapat dicari waktu dengan cara membagi kecepatan dengan percepatan total, dimana percepatan total adalah turunan dari kecepatan terhadap waktu

t= v(t) / ((F - (F gesek + F hambat))/m)


Programmobil1.png

Tugas 2

Tugas 3

Case Description

  • Airfoil memiliki karakteristik aerodinamis dan merupakan benda yang sering digunakan contohnya pada pesawat
  • Thrust pada pesawat berpengaruh pada effisiensi aerodinamis, maka dari itu dibutuhkan Cl/Cd yang kecil. Cl dan Cd tergantung pada angle of attack dari airfoil.
  • Airfoil yang digunakan kali ini adalah airfoil NACA 0012
  • Fluida udara yang melewat air foil steady flow dan incompressible, simulasi CFD dalam kondisi adiabatic

Kemudian Airfoil yang digunakan dilakukan variasi pada 6 angle of attack yang berbeda berupa (degrees):

  • 0
  • 2
  • 4
  • 6
  • 8
  • 10

Simulasi CFD SOF

Kemudian dilakukan simulasi airfoil dan didapatkan data sebagai berikut,

TabelDrag.png

TabelLift.png

Kemudian data tersebut direpresentasikan dalam bentuk grafik pada excel,

GrafikDrag.png

GrafikLift.png

Optimasi

Didapatkan rumus drag berupa y = 0,0005x3 + 0,0031x2 + 0,0027x + 1,1357 dan juga rumus lift berupa y = -0,0203x2 + 0,6021x - 0,0401. Dari kedua rumus tersebut kemudian dimasukkan dalam program python dibawah ini:


import numpy as np from scipy.optimize import minimize def calc_drag(x):#drag x1 = x[0] drag = 0.0099*x1**2-0.0223*x1**1+1.1466 return drag def calc_lift(x): #lift x1 = x[0] lift = -0.0203*x1**2+0.6021*x1**1-0.0401 return lift def objective(x): #volume yang diminimalkan return calc_drag(x) def constraint1(x): #variable SUDUT yang meminimalkan persamaan garis drag return 90 - calc_drag(x) def constraint2(x): #variable SUDUT yang meminimalkan persamaan garis lift return 90 - calc_lift(x) con1=({'type':'ineq','fun':constraint1}) con2=({'type':'ineq','fun':constraint2}) cons = (con1,con2) x1_guess = 50 x0 = np.array([x1_guess]) sol = minimize(objective,x0, method='SLSQP',constraints=cons, options={'disp':True}) xopt = sol.x forceopt = -sol.fun dragopt = calc_drag(xopt) # drag optimal liftopt = calc_lift(xopt) # lift optimal print ('sudut optimal = '+str(-xopt[0])) print ('total force optimal = '+str(forceopt)) print ('drag force optimal = '+str(-dragopt)) print ('lift force optimal = '+str(liftopt)) # In[10]: import numpy as np from scipy.optimize import minimize def calc_drag(x):#drag x1 = x[0] drag = 0.0099*x1**2-0.0223*x1**1+1.1466 return drag def calc_lift(x): #lift x1 = x[0] lift = -0.0203*x1**2+0.6021*x1**1-0.0401 return lift def objective(x): #volume yang diminimalkan return calc_lift(x) def constraint1(x): #variable SUDUT yang meminimalkan persamaan garis drag return 90 - calc_drag(x) def constraint2(x): #variable SUDUT yang meminimalkan persamaan garis lift return 90 - calc_lift(x) con1=({'type':'ineq','fun':constraint1}) con2=({'type':'ineq','fun':constraint2}) cons = (con1,con2) x1_guess = 50 x0 = np.array([x1_guess]) sol = minimize(objective,x0, method='SLSQP',constraints=cons, options={'disp':True}) xopt = sol.x forceopt = -sol.fun dragopt = calc_drag(xopt) # drag optimal liftopt = calc_lift(xopt) # lift optimal print ('sudut optimal = '+str(xopt[0])) print ('total force optimal = '+str(-forceopt)) print ('drag force optimal = '+str(dragopt)) print ('lift force optimal = '+str(liftopt))

Kemudian setelah program dijalan didapatkan hasil sebagai berikut:

   Optimization terminated successfully.    (Exit mode 0)
           Current function value: 1.1340421717179265
           Iterations: 5
           Function evaluations: 15
           Gradient evaluations: 5
   sudut optimal = -1.1262713580043062
   total force optimal = -1.1340421717179265
   drag force optimal = -1.1340421717179265
   lift force optimal = 0.6122776950656171
   Optimization terminated successfully.    (Exit mode 0)
           Current function value: -128.89494468045336
           Iterations: 7
           Function evaluations: 24
           Gradient evaluations: 7
   sudut optimal = 95.86991386912578
   total force optimal = -128.89494468045336
   drag force optimal = 90.00000073492711
   lift force optimal = -128.89494468045336