Difference between revisions of "Aisyah Rahmi Nurhanifah"
Aisyah.rahmi (talk | contribs) (→Surface Area) |
Aisyah.rahmi (talk | contribs) (→My Concious Effort on Numerical Method Learning and Its Application in Hydrogen Storage Design) |
||
(31 intermediate revisions by the same user not shown) | |||
Line 46: | Line 46: | ||
== Final Report of Optimization of Pressurized Hydrogen Storage == | == Final Report of Optimization of Pressurized Hydrogen Storage == | ||
+ | Material yang digunakan adalah Stainless Steel 304 | ||
==== Thickness ==== | ==== Thickness ==== | ||
<syntaxhighlight lang="xml"> | <syntaxhighlight lang="xml"> | ||
def calculate_optimized_thickness(volume, pressure): | def calculate_optimized_thickness(volume, pressure): | ||
− | # | + | # Stainless Steel properties |
− | yield_strength = | + | yield_strength = 205e6 # Yield strength of the stainless steel in Pascals |
safety_factor = 3 # Desired safety factor | safety_factor = 3 # Desired safety factor | ||
Line 74: | Line 75: | ||
return thickness_mm | return thickness_mm | ||
− | + | # Input parameters | |
− | + | volume = 1 # 1-liter capacity | |
− | + | pressure = 8 # 8 bar pressure | |
− | + | # Calculate the optimized thickness | |
− | + | optimized_thickness = calculate_optimized_thickness(volume, pressure) | |
− | + | print(f"The optimized thickness of the stainless steel hydrogen storage vessel is {optimized_thickness:.2f} mm.") | |
</syntaxhighlight> | </syntaxhighlight> | ||
− | '''The optimized thickness of the | + | '''The optimized thickness of the stainless steel hydrogen storage vessel is 3.63 mm.''' |
− | ==== Heigth ==== | + | ==== Heigth and Diameter ==== |
<syntaxhighlight lang="xml"> | <syntaxhighlight lang="xml"> | ||
− | + | import math | |
− | |||
− | |||
− | + | def calculate_surface_area(radius, height): | |
− | + | # Calculate the surface area of the tube | |
− | + | base_area = math.pi * radius**2 | |
− | + | lateral_area = 2 * math.pi * radius * height | |
− | + | surface_area = 2 * base_area + lateral_area | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | # Calculate the | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | return surface_area | |
− | |||
− | + | def find_optimal_dimensions(volume, pressure, tensile_strength): | |
+ | # Convert volume from mL to cm^3 | ||
+ | volume_cm3 = volume | ||
− | |||
− | |||
− | |||
# Convert pressure from bar to Pascal | # Convert pressure from bar to Pascal | ||
pressure_pa = pressure * 100000 | pressure_pa = pressure * 100000 | ||
− | # | + | # Initialize variables for optimal dimensions |
− | + | optimal_radius = None | |
+ | optimal_height = None | ||
+ | min_surface_area = float('inf') | ||
− | # | + | # Iterate over possible radius values |
− | + | for radius in range(1, int(math.sqrt(volume_cm3 / math.pi)) + 1): | |
− | + | # Calculate the corresponding height for the given volume and radius | |
+ | height = volume_cm3 / (math.pi * radius**2) | ||
− | + | # Calculate the surface area for the current dimensions | |
− | + | surface_area = calculate_surface_area(radius, height) | |
− | + | # Check if the current surface area is the lowest found so far | |
− | + | if surface_area < min_surface_area: | |
+ | min_surface_area = surface_area | ||
+ | optimal_radius = radius | ||
+ | optimal_height = height | ||
− | # | + | # Convert optimal radius to centimeters |
− | + | optimal_radius_cm = optimal_radius | |
− | + | return optimal_radius_cm, optimal_height | |
− | |||
− | + | # Define the input parameters | |
− | + | volume = 1000 # 1 liter = 1000 mL | |
+ | pressure = 8 # bar | ||
+ | tensile_strength = 310 # MPa | ||
− | + | # Find the optimal dimensions | |
− | + | optimal_radius_cm, optimal_height = find_optimal_dimensions(volume, pressure, tensile_strength) | |
− | + | # Display the results | |
− | + | print(f"Dimensi yang menghasilkan luas permukaan terendah untuk tabung 1 liter dengan tekanan 8 bar yang terbuat dari Alumunium Alloy 6061:") | |
− | + | print(f"Radius: {optimal_radius_cm} cm") | |
− | + | print(f"Tinggi: {optimal_height} cm") | |
− | + | </syntaxhighlight> | |
− | + | '''Dimensi yang menghasilkan luas permukaan terendah untuk tabung 1 liter dengan tekanan 8 bar yang terbuat dari Stainless Steel: | |
− | |||
− | + | Radius: 5 cm | |
− | |||
− | + | Tinggi: 12.732395447351626 cm''' | |
==== Surface Area ==== | ==== Surface Area ==== | ||
Line 176: | Line 157: | ||
def find_surface_area(): | def find_surface_area(): | ||
# Konversi radius, tinggi, dan ketebalan plat menjadi cm | # Konversi radius, tinggi, dan ketebalan plat menjadi cm | ||
− | radius_cm = | + | radius_cm = 5 |
height_cm = 12.732 | height_cm = 12.732 | ||
− | thickness_mm = | + | thickness_mm = 3.63 |
# Konversi kapasitas dalam liter menjadi volume dalam cm^3 | # Konversi kapasitas dalam liter menjadi volume dalam cm^3 | ||
Line 187: | Line 168: | ||
# Kekuatan tarik baja dalam Pa | # Kekuatan tarik baja dalam Pa | ||
− | tensile_strength = | + | tensile_strength = 600 * 10**6 |
# Konversi ketebalan plat menjadi cm | # Konversi ketebalan plat menjadi cm | ||
Line 217: | Line 198: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
− | '''Luas permukaan tabung hidrogen | + | '''Luas permukaan tabung hidrogen adalah 484.8959730734868 cm^2''' |
+ | |||
+ | ==== Harga ==== | ||
+ | Harga material plat Stainless Steel 304 per 1 cm^2 dengan tebal 5 mm (sumber tokopedia) adalah Rp.350 | ||
+ | |||
+ | Maka harga untuk plat Stainless Steel 304 dengan luas 484.895 cm^2 adalah Rp.169.713,25 atau Rp. 170.000,00 | ||
+ | |||
+ | Harga regulator untuk 140 psi (8 bar)(sumber tokopedia) adalah Rp. 287.000 | ||
+ | |||
+ | Sehingga, total biaya yang digunakan sebesar Rp. 457.000,00 | ||
+ | |||
+ | ==== Kesimpulan ==== | ||
+ | Volume = 1 liter | ||
+ | |||
+ | Pressure = 8 bar | ||
+ | |||
+ | Budget = Rp. 500.000,00 | ||
+ | |||
+ | Material = Stainless Steel 304 | ||
+ | |||
+ | Yield Strength = 205 MPa | ||
+ | |||
+ | Tensile Strength = 600 MPa | ||
+ | |||
+ | Ketebalan Tabung = 3.63 mm | ||
+ | |||
+ | Radius = 5 cm | ||
+ | |||
+ | Tinggi = 12.732395447351626 cm | ||
+ | |||
+ | Luas Permukaan = 484.8959730734868 cm^2 | ||
+ | |||
+ | Cost : | ||
+ | |||
+ | Plat Stainless Steel 304 = Rp.169.713,25 atau Rp. 170.000,00 | ||
+ | |||
+ | Regulator 140 psi (8 bar)= Rp. 287.000 | ||
+ | |||
+ | Total biaya = Rp. 457.000,00 | ||
− | == | + | == My Concious Effort on Numerical Method Learning and Its Application in Hydrogen Storage Design == |
− | + | <youtube width="200" height="100">FyPN8-XDuBY</youtube> | |
− | |||
− | == |
Latest revision as of 22:04, 15 June 2023
Contents
Introduction
Perkenalkan saya Aisyah Rahmi Nurhanifah dengan NPM 2106707845, program studi Teknik Perkapalan tahun 2021.
Resume Pertemuan 1 (26/5/2023)
Pada pertemuan pertama, saya mempelajari bahwa metode nemuerik adalah metode yang digunakan untuk menyelesaikan suatu permasalahan matematika yang kompleks melalui pendekatan secara numerikal. Matematika adalah ilmu pasti, akan tetapi kemarin saya menyadari bahkan di matematika pun tidak semua jawaban absolut atau eksak (pasti). Contoh dari soal (x-1)^2/(x-1) dengan x = 1. Apabila langsung disubstitusikan maka hasilnya ada 0/0 atau tidak terdefinisikan, sedangkan apabila dijabarkan melalui pendekatan secara limit, maka hasilnya adalah 2. Akan tetapi 2 juga bukan merupakan jawaban eksak karena pendekatan secara limit menjadikan x mendekati 1, bukan x = 1 (absolut). Oleh karena itu, di dunia ini yang abosolut hanyalah Tuhan Yang Maha Esa. Pada pertemuan kemarin, saya juga mempelajari tentang “counciousness”. Dalam menyelesaikann suatu permasalahan, kita harus “councious” mengenai permasalahan tersebut dan mencari solusi untuk menyelesaikannya. Selain itu, kami juga mendapatkan tugas untuk mendesain 1 liter tabung hidrogen dengan tekanan 8 bar dan biaya maksimal Rp. 500.000,00
Design & Optimization of Pressurized Hydrogen Storage
To design and optimizing a Hydrogen Storage with specification: Volume: 1 Liter Pressure: 8 bar Budget: Rp.500.000,00 I use ChatGPT and here are the steps in designing and optimizing a Hydrogen Storage:
Select Storage Method
Choose the appropriate method for hydrogen storage based on your requirements. Common methods include compressed gas cylinders, cryogenic liquid storage, or solid-state hydrogen storage materials. Each method has its advantages and considerations in terms of cost, efficiency, and safety.
Material Selection
Select suitable materials for your chosen storage method. For compressed gas cylinders, consider materials such as steel or aluminum alloys with high tensile strength and compatibility with hydrogen. For cryogenic storage, choose materials with low-temperature resistance. For solid-state storage, explore materials with high hydrogen storage capacity.
Design and Engineering
Develop a design for the storage system, considering factors such as pressure vessels, insulation, valves, fittings, and safety mechanisms. Engage with engineers and experts in the field to ensure compliance with safety standards and optimize the design for performance and cost.
Manufacturing Process
Explore cost-effective manufacturing processes such as seamless cylinder fabrication or efficient welding techniques.
Cost Optimization
Consider cost optimization techniques to stay within your budget. Explore options such as optimizing the size and shape of the storage vessel, minimizing material usage while maintaining safety requirements, and considering cost-effective manufacturing processes.
Simulation and Analysis
Utilize numerical simulations and analysis tools to evaluate the performance and safety of the storage system design. Perform stress analysis, pressure simulations, and leakage assessments to ensure the system's integrity and reliability.
Prototype and Testing
Build a prototype based on the optimized design and conduct thorough testing to validate the performance and safety of the storage system. This step is crucial to identify any design flaws or operational issues before implementation.
Compliance and Certification
Ensure compliance with applicable regulations, standards, and certifications for hydrogen storage systems. Consult with relevant authorities and certification bodies to meet the required safety and performance criteria.
Final Report of Optimization of Pressurized Hydrogen Storage
Material yang digunakan adalah Stainless Steel 304
Thickness
def calculate_optimized_thickness(volume, pressure):
# Stainless Steel properties
yield_strength = 205e6 # Yield strength of the stainless steel in Pascals
safety_factor = 3 # Desired safety factor
# Conversion factors
bar_to_pa = 1e5 # Bar to Pascal conversion factor
# Convert pressure to Pascal
pressure_pa = pressure * bar_to_pa
# Calculate the radius of the cylinder using the given volume
radius = (3 * volume / (4 * math.pi))**(1/3)
# Calculate the hoop stress
hoop_stress = pressure_pa * radius / 2
# Calculate the required thickness
thickness = hoop_stress * safety_factor / yield_strength
# Convert thickness to millimeters
thickness_mm = thickness * 1000
return thickness_mm
# Input parameters
volume = 1 # 1-liter capacity
pressure = 8 # 8 bar pressure
# Calculate the optimized thickness
optimized_thickness = calculate_optimized_thickness(volume, pressure)
print(f"The optimized thickness of the stainless steel hydrogen storage vessel is {optimized_thickness:.2f} mm.")
The optimized thickness of the stainless steel hydrogen storage vessel is 3.63 mm.
Heigth and Diameter
import math
def calculate_surface_area(radius, height):
# Calculate the surface area of the tube
base_area = math.pi * radius**2
lateral_area = 2 * math.pi * radius * height
surface_area = 2 * base_area + lateral_area
return surface_area
def find_optimal_dimensions(volume, pressure, tensile_strength):
# Convert volume from mL to cm^3
volume_cm3 = volume
# Convert pressure from bar to Pascal
pressure_pa = pressure * 100000
# Initialize variables for optimal dimensions
optimal_radius = None
optimal_height = None
min_surface_area = float('inf')
# Iterate over possible radius values
for radius in range(1, int(math.sqrt(volume_cm3 / math.pi)) + 1):
# Calculate the corresponding height for the given volume and radius
height = volume_cm3 / (math.pi * radius**2)
# Calculate the surface area for the current dimensions
surface_area = calculate_surface_area(radius, height)
# Check if the current surface area is the lowest found so far
if surface_area < min_surface_area:
min_surface_area = surface_area
optimal_radius = radius
optimal_height = height
# Convert optimal radius to centimeters
optimal_radius_cm = optimal_radius
return optimal_radius_cm, optimal_height
# Define the input parameters
volume = 1000 # 1 liter = 1000 mL
pressure = 8 # bar
tensile_strength = 310 # MPa
# Find the optimal dimensions
optimal_radius_cm, optimal_height = find_optimal_dimensions(volume, pressure, tensile_strength)
# Display the results
print(f"Dimensi yang menghasilkan luas permukaan terendah untuk tabung 1 liter dengan tekanan 8 bar yang terbuat dari Alumunium Alloy 6061:")
print(f"Radius: {optimal_radius_cm} cm")
print(f"Tinggi: {optimal_height} cm")
Dimensi yang menghasilkan luas permukaan terendah untuk tabung 1 liter dengan tekanan 8 bar yang terbuat dari Stainless Steel:
Radius: 5 cm
Tinggi: 12.732395447351626 cm
Surface Area
def calculate_surface_area(radius, height):
return 2 * math.pi * radius * (radius + height)
def find_surface_area():
# Konversi radius, tinggi, dan ketebalan plat menjadi cm
radius_cm = 5
height_cm = 12.732
thickness_mm = 3.63
# Konversi kapasitas dalam liter menjadi volume dalam cm^3
volume = 1000
# Konversi tekanan dalam bar menjadi tekanan dalam Pa
pressure = 8 * 10**5
# Kekuatan tarik baja dalam Pa
tensile_strength = 600 * 10**6
# Konversi ketebalan plat menjadi cm
thickness_cm = thickness_mm / 10
# Hitung jari-jari dalam cm
inner_radius = radius_cm - thickness_cm
# Hitung tinggi dalam cm
inner_height = height_cm - (2 * thickness_cm)
# Hitung luas permukaan tabung dalam cm^2
surface_area = calculate_surface_area(inner_radius, inner_height)
# Periksa apakah tekanan dalam batas kekuatan tarik baja
if surface_area * pressure <= tensile_strength:
return surface_area
else:
return None
# Panggil fungsi untuk mencari luas permukaan tabung
surface_area = find_surface_area()
# Tampilkan hasil
if surface_area is not None:
print("Luas permukaan tabung hidrogen adalah ", surface_area, " cm^2")
else:
print("Luas permukaan tabung melebihi batas kekuatan tarik baja.")
Luas permukaan tabung hidrogen adalah 484.8959730734868 cm^2
Harga
Harga material plat Stainless Steel 304 per 1 cm^2 dengan tebal 5 mm (sumber tokopedia) adalah Rp.350
Maka harga untuk plat Stainless Steel 304 dengan luas 484.895 cm^2 adalah Rp.169.713,25 atau Rp. 170.000,00
Harga regulator untuk 140 psi (8 bar)(sumber tokopedia) adalah Rp. 287.000
Sehingga, total biaya yang digunakan sebesar Rp. 457.000,00
Kesimpulan
Volume = 1 liter
Pressure = 8 bar
Budget = Rp. 500.000,00
Material = Stainless Steel 304
Yield Strength = 205 MPa
Tensile Strength = 600 MPa
Ketebalan Tabung = 3.63 mm
Radius = 5 cm
Tinggi = 12.732395447351626 cm
Luas Permukaan = 484.8959730734868 cm^2
Cost :
Plat Stainless Steel 304 = Rp.169.713,25 atau Rp. 170.000,00
Regulator 140 psi (8 bar)= Rp. 287.000
Total biaya = Rp. 457.000,00