Difference between revisions of "Ichram Fauzan Saheptra"
Ichramfauzan (talk | contribs) (→Dimensi Tabung) |
Ichramfauzan (talk | contribs) (→My Concious Effort on Numerical Method Learning and Its Application in Hydrogen Storage Design) |
||
(36 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
Salam Kenal Semuanya... | Salam Kenal Semuanya... | ||
+ | |||
+ | == My Concious Efforts on Numerical Method Learning and Application In Hydrogen Storage Design == | ||
+ | <youtube width="200" height="100">v=L_mFYMQ0OY8</youtube> | ||
==Perkuliahan 26/05/23== | ==Perkuliahan 26/05/23== | ||
Line 55: | Line 58: | ||
Biaya Maks.: Rp.500.000 | Biaya Maks.: Rp.500.000 | ||
− | |||
==== Dimensi Tabung ==== | ==== Dimensi Tabung ==== | ||
Line 61: | Line 63: | ||
import math | import math | ||
− | def | + | def calculate_surface_area(radius, height): |
− | yield_strength = 30 | + | lateral_area = 2 * math.pi * radius * height |
+ | base_area = math.pi * radius**2 | ||
+ | return 2 * base_area + lateral_area | ||
+ | |||
+ | def find_optimal_dimensions(volume): | ||
+ | min_surface_area = float('inf') | ||
+ | optimal_radius = 0 | ||
+ | optimal_height = 0 | ||
+ | |||
+ | for radius in range(1, int(volume**(1/3)) + 1): | ||
+ | height = volume / (math.pi * radius**2) | ||
+ | surface_area = calculate_surface_area(radius, height) | ||
+ | |||
+ | if surface_area < min_surface_area: | ||
+ | min_surface_area = surface_area | ||
+ | optimal_radius = radius | ||
+ | optimal_height = height | ||
+ | |||
+ | return optimal_radius, optimal_height | ||
+ | |||
+ | volume = 1000 | ||
+ | radius, height = find_optimal_dimensions(volume) | ||
+ | print(f"Optimal dimensions for a tube with a volume of {volume} cm³:") | ||
+ | print(f"Radius: {radius} cm") | ||
+ | print(f"Height: {height} cm") | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | '''Dari hasil codingan diatas didapatkan dimensi optimal dari tabung :''' | ||
+ | |||
+ | Radius : '''5 cm''' | ||
+ | |||
+ | Tinggi : '''12.73 cm''' | ||
+ | |||
+ | ==== Ketebalan Tabung ==== | ||
+ | |||
+ | <syntaxhighlight lang="xml"> | ||
+ | |||
+ | Bahan pertama HDPE | ||
+ | |||
+ | import math | ||
+ | |||
+ | def calculate_optimized_thickness(volume, pressure): | ||
+ | yield_strength = 30 | ||
safety_factor = 2 | safety_factor = 2 | ||
− | mpa_to_bar = 10 | + | mpa_to_bar = 10 |
pressure_mpa = pressure / mpa_to_bar | pressure_mpa = pressure / mpa_to_bar | ||
− | + | thickness = (volume * pressure_mpa) / (2 * math.pi * yield_strength * safety_factor) | |
− | + | thickness_mm = thickness * 1000 | |
− | + | return thickness_mm | |
− | + | ||
+ | volume = 1 | ||
+ | pressure = 8 | ||
+ | |||
+ | optimized_thickness = calculate_optimized_thickness(volume, pressure) | ||
+ | |||
+ | print(f"The optimized thickness of HDPE for {volume} liter capacity and {pressure} bar pressure is approximately {optimized_thickness:.2f} mm.") | ||
+ | |||
+ | Dari hasil codingan diatas didapatkan tebal optimal dari HDPE: | ||
+ | |||
+ | Tebal : 2.12 mm | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <syntaxhighlight lang="xml"> | ||
+ | |||
+ | Bahan Kedua Stainless Steel 304L | ||
+ | |||
+ | import math | ||
+ | |||
+ | def calculate_optimized_thickness(volume, pressure): | ||
+ | yield_strength = 205 | ||
+ | safety_factor = 2 | ||
+ | |||
+ | mpa_to_bar = 10 | ||
+ | pressure_mpa = pressure / mpa_to_bar | ||
− | return | + | thickness = (volume * pressure_mpa) / (2 * math.pi * yield_strength * safety_factor) |
+ | thickness_mm = thickness * 1000 | ||
+ | |||
+ | return thickness_mm | ||
+ | volume = 1 | ||
+ | pressure = 8 | ||
− | volume = | + | optimized_thickness = calculate_optimized_thickness(volume, pressure) |
− | + | ||
+ | print(f"The optimized thickness of mild steel for {volume} liter capacity and {pressure} bar pressure is approximately {optimized_thickness:.2f} mm.") | ||
+ | |||
+ | Dari hasil codingan diatas didapatkan tebal optimal dari Stainless Steel 304L: | ||
+ | |||
+ | Tebal : 0.31 mm | ||
+ | |||
+ | </syntaxhighlight> | ||
+ | |||
+ | '''Dari hasil codingan diatas didapatkan tebal optimal dari tabung hidrogen:''' | ||
+ | |||
+ | Tebal : '''2.43 mm''' | ||
+ | |||
+ | dan untuk tebal yang saya gunakan dalam pembuatan tabung adalah 3mm HDPE dan 1mm stainless steel, | ||
+ | jadi total tebal nya adalah '''4 mm''' | ||
+ | |||
+ | ==== Surface Area ==== | ||
+ | |||
+ | <syntaxhighlight lang="xml"> | ||
+ | import math | ||
+ | |||
+ | def calculate_surface_area(height, diameter, thickness): | ||
+ | height_mm = height | ||
+ | diameter_mm = diameter | ||
+ | thickness_mm = thickness | ||
+ | |||
+ | radius_inner = (diameter_mm / 2) - thickness_mm | ||
+ | radius_outer = diameter_mm / 2 | ||
+ | |||
+ | area_inner = 2 * math.pi * radius_inner * height_mm | ||
+ | area_outer = 2 * math.pi * radius_outer * height_mm | ||
+ | area_top_bottom = math.pi * (radius_outer**2 - radius_inner**2) | ||
+ | |||
+ | total_surface_area = area_inner + area_outer + area_top_bottom | ||
+ | |||
+ | return total_surface_area | ||
+ | |||
+ | height = 127 | ||
+ | diameter = 100 | ||
+ | thickness = 4 | ||
+ | surface_area = calculate_surface_area(height, diameter, thickness) | ||
− | + | print(f"The surface area of the cylindrical vessel is approximately {surface_area:.2f} square millimeters.") | |
− | |||
</syntaxhighlight> | </syntaxhighlight> | ||
+ | '''Dari hasil codingan diatas didapatkan surface area optimal dari tabung hidrogen:''' | ||
+ | |||
+ | Luas Area : '''778.11 cm^2''' | ||
+ | |||
+ | ==== Hoop Stress ==== | ||
<syntaxhighlight lang="xml"> | <syntaxhighlight lang="xml"> | ||
− | + | r = 3.8e-2 | |
+ | p = 800000 | ||
+ | t = 2e-4 | ||
+ | |||
+ | while t < 4e-3: | ||
+ | hoop = (r * p)/(t) | ||
+ | print('for thickness', t, 'hoop stress =', hoop, "Pa") | ||
+ | t += 4.4e-4 | ||
+ | if hoop > 205e9: | ||
+ | break | ||
+ | |||
+ | Dengan hasil : | ||
+ | |||
+ | for thickness 0.0002 hoop stress = 152000000.0 Pa | ||
+ | for thickness 0.00064 hoop stress = 47499999.99999999 Pa | ||
+ | for thickness 0.00108 hoop stress = 28148148.14814815 Pa | ||
+ | for thickness 0.00152 hoop stress = 20000000.0 Pa | ||
+ | for thickness 0.00196 hoop stress = 15510204.081632653 Pa | ||
+ | for thickness 0.0024 hoop stress = 12666666.666666668 Pa | ||
+ | for thickness 0.0028399999999999996 hoop stress = 10704225.352112677 Pa | ||
+ | for thickness 0.0032799999999999995 hoop stress = 9268292.68292683 Pa | ||
+ | for thickness 0.0037199999999999993 hoop stress = 8172043.01075269 Pa | ||
− | |||
− | |||
</syntaxhighlight> | </syntaxhighlight> | ||
− | |||
− | |||
==== Total Biaya ==== | ==== Total Biaya ==== | ||
+ | |||
+ | Harga material plat stainless steel 304L per cm^2 dengan tebal 1mm (sumber tokopedia) adalah '''Rp.100''' | ||
+ | |||
+ | Maka harga untuk plat SS dengan luas 733.88 cm^2 adalah '''Rp.73.388''' | ||
+ | |||
+ | Harga material plat HDPE per cm^2 dengan tebal 3mm (sumber tokopedia) adalah '''Rp.41,5''' | ||
+ | |||
+ | Maka harga untuk plat HDPE dengan luas 778.11 cm^2 adalah '''Rp.32.292''' | ||
+ | |||
+ | Harga regulator 140psi dengan pengukur tekanan (sumber tokopedia) adalah '''Rp.140.000''' | ||
+ | |||
+ | |||
+ | Maka total biaya untuk membuat 1buah Tabung penyimpanan adalah '''Rp.245.680''' |
Latest revision as of 21:03, 15 June 2023
Contents
Introduction
Assalamualaikum warahmatullahi wabarakatu. Perkenalkan nama saya ichram fauzan biasa dipanggil ichram. Lahir di jakarta pada tanggal 20 Januari 2004 dan sekarang berdomisili di cibubur dengan NPM 2106731024 dari jurusan Teknik Perkapalan UI 2021
Salam Kenal Semuanya...
My Concious Efforts on Numerical Method Learning and Application In Hydrogen Storage Design
Perkuliahan 26/05/23
Pada pertemuan kelas Metode Numerik yang diajar oleh Pak DAI, pertama-tama dia berkenalan dengan mahasiswanya dengan tanya jawab mengenai metode numerik dan content yang di kirim di WAG. Lalu kita diberikan sebuah tugas untuk merancang sebuah tabung hidrogen berisi 1 liter dengan tekanan 8 bar dan budget dari pembuatan tabung tersebut harus dibawah 500.000, tujuan dari tugas ini untuk mengefesienkan bahan bakar pada kendaraan, karena jika hidrogen di campur dengan bahan bakar dapat meningkatkan efesiensi sebanyak 30%. Lalu beliau memberikan nasehat kepada mahasiswanya untuk memanfaatkan potensi yang dimiliki sebaik mungkin dan menekankan kepada mahasiswanya untuk memanfaatkan waktu sebaik mungkin untuk belajar dengan mandiri tidak hanya pada saat perkuliahan dan juga berinteraksi dengan dosen. Lalu Pak DAI juga menjelaskan bahwa metode numerik pada jaman ini dapat memudahkan kita jika menggunakannya dengan baik, contohnya adalah ChatGPT
Design & Optimization of Pressurized Hydrogen Storage
Tujuan : Merancang dan Mengoptimalisasi Tabung Penyimpanan Hidrogen
Spesifikasi :
- Kapasitas : 1 Liter
- Tekanan : 8 Bar
Biaya Tidak Lebih dari Rp.500k
Saat saya mengetahui bahwa perlu medesain projek tabung hidrogen ini, saya sadar bahwa saya perlu bantuan dalam mencari informasi tentang bahan dan prosedur untuk merancang dan mengoptimalisasi tabung penyimpanan hidrogen. Alat bantu yang saya gunakan untuk mencari informasi adalah ChatGPT. Berikut adalah respon yang diberikan oleh ChatGPT
-> Merancang dan mengoptimalkan sistem penyimpanan hidrogen bertekanan membutuhkan beberapa langkah penting. Berikut adalah penjelasan untuk membuat dan mengoptimalkan tabung penyimpanan hidrogen :
1. Tank Material
Material: Choose a tank material that is lightweight, durable, and compatible with hydrogen storage. Considering the budget constraint, a high-density polyethylene (HDPE) tank can be a cost-effective option
2. Tank Design
Select a tank type suitable for pressurized hydrogen storage. In this case, a Type IV tank, which consists of a composite overwrapped pressure vessel (COPV), can be a suitable choice due to its lightweight nature.
3. Manufacturing Process
The process of manufacturing a hydrogen tank involves shaping the base material into a tank shape, as with the extrusion method, where HDPE in resin form is heated and pressed through an extruder. After extrusion the tube will be cut to specifications, make sure the tube is cut with precision
4. Safety Measures
To prevent leakage, do a good seal on both ends of the HDPE tube. The sealing method may include heating and compacting the tube ends to seal them thermally or using other methods according to the HDPE material
5. Testing and Certification
After the hydrogen tank has been manufactured, it is important to testing to ensure safety and performance. Quality testing may include hydrostatic pressure testing, leak testing, visual testing and other relevant tests to verify cylinder quality. Ensure the tube meets applicable safety standards and obtain required certification
-> Untuk mengoptimalan tabung penyimpanan hidrogen dapat melakukan tahap berikut :
- Determine Storage Requirements - Evaluate Different Storage Methods - Optimize Cylinder Size
Final Report of Hydrogen Storage Optimization
Tujuan : Membuat dan mengoptimalisasi tabung penyimpanan hidrogen
Volume : 1 Liter
Tekanan : 8 Bar
Biaya Maks.: Rp.500.000
Dimensi Tabung
import math
def calculate_surface_area(radius, height):
lateral_area = 2 * math.pi * radius * height
base_area = math.pi * radius**2
return 2 * base_area + lateral_area
def find_optimal_dimensions(volume):
min_surface_area = float('inf')
optimal_radius = 0
optimal_height = 0
for radius in range(1, int(volume**(1/3)) + 1):
height = volume / (math.pi * radius**2)
surface_area = calculate_surface_area(radius, height)
if surface_area < min_surface_area:
min_surface_area = surface_area
optimal_radius = radius
optimal_height = height
return optimal_radius, optimal_height
volume = 1000
radius, height = find_optimal_dimensions(volume)
print(f"Optimal dimensions for a tube with a volume of {volume} cm³:")
print(f"Radius: {radius} cm")
print(f"Height: {height} cm")
Dari hasil codingan diatas didapatkan dimensi optimal dari tabung :
Radius : 5 cm
Tinggi : 12.73 cm
Ketebalan Tabung
Bahan pertama HDPE
import math
def calculate_optimized_thickness(volume, pressure):
yield_strength = 30
safety_factor = 2
mpa_to_bar = 10
pressure_mpa = pressure / mpa_to_bar
thickness = (volume * pressure_mpa) / (2 * math.pi * yield_strength * safety_factor)
thickness_mm = thickness * 1000
return thickness_mm
volume = 1
pressure = 8
optimized_thickness = calculate_optimized_thickness(volume, pressure)
print(f"The optimized thickness of HDPE for {volume} liter capacity and {pressure} bar pressure is approximately {optimized_thickness:.2f} mm.")
Dari hasil codingan diatas didapatkan tebal optimal dari HDPE:
Tebal : 2.12 mm
Bahan Kedua Stainless Steel 304L
import math
def calculate_optimized_thickness(volume, pressure):
yield_strength = 205
safety_factor = 2
mpa_to_bar = 10
pressure_mpa = pressure / mpa_to_bar
thickness = (volume * pressure_mpa) / (2 * math.pi * yield_strength * safety_factor)
thickness_mm = thickness * 1000
return thickness_mm
volume = 1
pressure = 8
optimized_thickness = calculate_optimized_thickness(volume, pressure)
print(f"The optimized thickness of mild steel for {volume} liter capacity and {pressure} bar pressure is approximately {optimized_thickness:.2f} mm.")
Dari hasil codingan diatas didapatkan tebal optimal dari Stainless Steel 304L:
Tebal : 0.31 mm
Dari hasil codingan diatas didapatkan tebal optimal dari tabung hidrogen:
Tebal : 2.43 mm
dan untuk tebal yang saya gunakan dalam pembuatan tabung adalah 3mm HDPE dan 1mm stainless steel, jadi total tebal nya adalah 4 mm
Surface Area
import math
def calculate_surface_area(height, diameter, thickness):
height_mm = height
diameter_mm = diameter
thickness_mm = thickness
radius_inner = (diameter_mm / 2) - thickness_mm
radius_outer = diameter_mm / 2
area_inner = 2 * math.pi * radius_inner * height_mm
area_outer = 2 * math.pi * radius_outer * height_mm
area_top_bottom = math.pi * (radius_outer**2 - radius_inner**2)
total_surface_area = area_inner + area_outer + area_top_bottom
return total_surface_area
height = 127
diameter = 100
thickness = 4
surface_area = calculate_surface_area(height, diameter, thickness)
print(f"The surface area of the cylindrical vessel is approximately {surface_area:.2f} square millimeters.")
Dari hasil codingan diatas didapatkan surface area optimal dari tabung hidrogen:
Luas Area : 778.11 cm^2
Hoop Stress
r = 3.8e-2
p = 800000
t = 2e-4
while t < 4e-3:
hoop = (r * p)/(t)
print('for thickness', t, 'hoop stress =', hoop, "Pa")
t += 4.4e-4
if hoop > 205e9:
break
Dengan hasil :
for thickness 0.0002 hoop stress = 152000000.0 Pa
for thickness 0.00064 hoop stress = 47499999.99999999 Pa
for thickness 0.00108 hoop stress = 28148148.14814815 Pa
for thickness 0.00152 hoop stress = 20000000.0 Pa
for thickness 0.00196 hoop stress = 15510204.081632653 Pa
for thickness 0.0024 hoop stress = 12666666.666666668 Pa
for thickness 0.0028399999999999996 hoop stress = 10704225.352112677 Pa
for thickness 0.0032799999999999995 hoop stress = 9268292.68292683 Pa
for thickness 0.0037199999999999993 hoop stress = 8172043.01075269 Pa
Total Biaya
Harga material plat stainless steel 304L per cm^2 dengan tebal 1mm (sumber tokopedia) adalah Rp.100
Maka harga untuk plat SS dengan luas 733.88 cm^2 adalah Rp.73.388
Harga material plat HDPE per cm^2 dengan tebal 3mm (sumber tokopedia) adalah Rp.41,5
Maka harga untuk plat HDPE dengan luas 778.11 cm^2 adalah Rp.32.292
Harga regulator 140psi dengan pengukur tekanan (sumber tokopedia) adalah Rp.140.000
Maka total biaya untuk membuat 1buah Tabung penyimpanan adalah Rp.245.680