Difference between revisions of "Aisyah Rahmi Nurhanifah"

From ccitonlinewiki
Jump to: navigation, search
(My Concious Effort on Numerical Method Learning and Its Application in Hydrogen Storage Design)
 
(55 intermediate revisions by the same user not shown)
Line 43: Line 43:
  
 
Ensure compliance with applicable regulations, standards, and certifications for hydrogen storage systems. Consult with relevant authorities and certification bodies to meet the required safety and performance criteria.
 
Ensure compliance with applicable regulations, standards, and certifications for hydrogen storage systems. Consult with relevant authorities and certification bodies to meet the required safety and performance criteria.
 +
 +
 +
== Final Report of Optimization of Pressurized Hydrogen Storage ==
 +
Material yang digunakan adalah Stainless Steel 304
 +
 +
==== Thickness ====
 +
<syntaxhighlight lang="xml">
 +
    def calculate_optimized_thickness(volume, pressure):
 +
    # Stainless Steel properties
 +
    yield_strength = 205e6  # Yield strength of the stainless steel in Pascals
 +
    safety_factor = 3  # Desired safety factor
 +
   
 +
    # Conversion factors
 +
    bar_to_pa = 1e5  # Bar to Pascal conversion factor
 +
   
 +
    # Convert pressure to Pascal
 +
    pressure_pa = pressure * bar_to_pa
 +
   
 +
    # Calculate the radius of the cylinder using the given volume
 +
    radius = (3 * volume / (4 * math.pi))**(1/3)
 +
   
 +
    # Calculate the hoop stress
 +
    hoop_stress = pressure_pa * radius / 2
 +
   
 +
    # Calculate the required thickness
 +
    thickness = hoop_stress * safety_factor / yield_strength
 +
   
 +
    # Convert thickness to millimeters
 +
    thickness_mm = thickness * 1000
 +
   
 +
    return thickness_mm
 +
 +
# Input parameters
 +
volume = 1  # 1-liter capacity
 +
pressure = 8  # 8 bar pressure
 +
 +
# Calculate the optimized thickness
 +
optimized_thickness = calculate_optimized_thickness(volume, pressure)
 +
 +
print(f"The optimized thickness of the stainless steel hydrogen storage vessel is {optimized_thickness:.2f} mm.")
 +
</syntaxhighlight>
 +
 +
'''The optimized thickness of the stainless steel hydrogen storage vessel is 3.63 mm.'''
 +
 +
==== Heigth and Diameter  ====
 +
<syntaxhighlight lang="xml">
 +
  import math
 +
 +
def calculate_surface_area(radius, height):
 +
    # Calculate the surface area of the tube
 +
    base_area = math.pi * radius**2
 +
    lateral_area = 2 * math.pi * radius * height
 +
    surface_area = 2 * base_area + lateral_area
 +
 +
    return surface_area
 +
 +
def find_optimal_dimensions(volume, pressure, tensile_strength):
 +
    # Convert volume from mL to cm^3
 +
    volume_cm3 = volume
 +
 +
    # Convert pressure from bar to Pascal
 +
    pressure_pa = pressure * 100000
 +
 +
    # Initialize variables for optimal dimensions
 +
    optimal_radius = None
 +
    optimal_height = None
 +
    min_surface_area = float('inf')
 +
 +
    # Iterate over possible radius values
 +
    for radius in range(1, int(math.sqrt(volume_cm3 / math.pi)) + 1):
 +
        # Calculate the corresponding height for the given volume and radius
 +
        height = volume_cm3 / (math.pi * radius**2)
 +
 +
        # Calculate the surface area for the current dimensions
 +
        surface_area = calculate_surface_area(radius, height)
 +
 +
        # Check if the current surface area is the lowest found so far
 +
        if surface_area < min_surface_area:
 +
            min_surface_area = surface_area
 +
            optimal_radius = radius
 +
            optimal_height = height
 +
 +
    # Convert optimal radius to centimeters
 +
    optimal_radius_cm = optimal_radius
 +
 +
    return optimal_radius_cm, optimal_height
 +
 +
# Define the input parameters
 +
volume = 1000  # 1 liter = 1000 mL
 +
pressure = 8  # bar
 +
tensile_strength = 310  # MPa
 +
 +
# Find the optimal dimensions
 +
optimal_radius_cm, optimal_height = find_optimal_dimensions(volume, pressure, tensile_strength)
 +
 +
# Display the results
 +
print(f"Dimensi yang menghasilkan luas permukaan terendah untuk tabung 1 liter dengan tekanan 8 bar yang terbuat dari Alumunium Alloy 6061:")
 +
print(f"Radius: {optimal_radius_cm} cm")
 +
print(f"Tinggi: {optimal_height} cm")
 +
</syntaxhighlight>
 +
 +
'''Dimensi yang menghasilkan luas permukaan terendah untuk tabung 1 liter dengan tekanan 8 bar yang terbuat dari Stainless Steel:
 +
 +
Radius: 5 cm
 +
 +
Tinggi: 12.732395447351626 cm'''
 +
 +
==== Surface Area ====
 +
<syntaxhighlight lang="xml">
 +
def calculate_surface_area(radius, height):
 +
    return 2 * math.pi * radius * (radius + height)
 +
 +
def find_surface_area():
 +
    # Konversi radius, tinggi, dan ketebalan plat menjadi cm
 +
    radius_cm = 5
 +
    height_cm = 12.732
 +
    thickness_mm = 3.63
 +
 +
    # Konversi kapasitas dalam liter menjadi volume dalam cm^3
 +
    volume = 1000
 +
 +
    # Konversi tekanan dalam bar menjadi tekanan dalam Pa
 +
    pressure = 8 * 10**5
 +
 +
    # Kekuatan tarik baja dalam Pa
 +
    tensile_strength = 600 * 10**6
 +
 +
    # Konversi ketebalan plat menjadi cm
 +
    thickness_cm = thickness_mm / 10
 +
 +
    # Hitung jari-jari dalam cm
 +
    inner_radius = radius_cm - thickness_cm
 +
 +
    # Hitung tinggi dalam cm
 +
    inner_height = height_cm - (2 * thickness_cm)
 +
 +
    # Hitung luas permukaan tabung dalam cm^2
 +
    surface_area = calculate_surface_area(inner_radius, inner_height)
 +
 +
    # Periksa apakah tekanan dalam batas kekuatan tarik baja
 +
    if surface_area * pressure <= tensile_strength:
 +
        return surface_area
 +
    else:
 +
        return None
 +
 +
# Panggil fungsi untuk mencari luas permukaan tabung
 +
surface_area = find_surface_area()
 +
 +
# Tampilkan hasil
 +
if surface_area is not None:
 +
    print("Luas permukaan tabung hidrogen adalah ", surface_area, " cm^2")
 +
else:
 +
    print("Luas permukaan tabung melebihi batas kekuatan tarik baja.")
 +
</syntaxhighlight>
 +
 +
'''Luas permukaan tabung hidrogen adalah  484.8959730734868  cm^2'''
 +
 +
==== Harga ====
 +
Harga material plat Stainless Steel 304 per 1 cm^2 dengan tebal 5 mm (sumber tokopedia) adalah Rp.350
 +
 +
Maka harga untuk plat Stainless Steel 304 dengan luas 484.895 cm^2 adalah Rp.169.713,25 atau Rp. 170.000,00
 +
 +
Harga regulator untuk 140 psi (8 bar)(sumber tokopedia) adalah Rp. 287.000
 +
 +
Sehingga, total biaya yang digunakan sebesar Rp. 457.000,00
 +
 +
==== Kesimpulan ====
 +
Volume = 1 liter
 +
 +
Pressure = 8 bar
 +
 +
Budget = Rp. 500.000,00
 +
 +
Material = Stainless Steel 304
 +
 +
Yield Strength = 205 MPa
 +
 +
Tensile Strength = 600 MPa
 +
 +
Ketebalan Tabung = 3.63 mm
 +
 +
Radius = 5 cm
 +
 +
Tinggi =  12.732395447351626 cm
 +
 +
Luas Permukaan = 484.8959730734868  cm^2
 +
 +
Cost :
 +
 +
Plat Stainless Steel 304 = Rp.169.713,25 atau Rp. 170.000,00
 +
 +
Regulator 140 psi (8 bar)= Rp. 287.000
 +
 +
Total biaya = Rp. 457.000,00
 +
 +
== My Concious Effort on Numerical Method Learning and Its Application in Hydrogen Storage Design ==
 +
<youtube width="200" height="100">FyPN8-XDuBY</youtube>

Latest revision as of 22:04, 15 June 2023

Introduction

Perkenalkan saya Aisyah Rahmi Nurhanifah dengan NPM 2106707845, program studi Teknik Perkapalan tahun 2021.

Resume Pertemuan 1 (26/5/2023)

Pada pertemuan pertama, saya mempelajari bahwa metode nemuerik adalah metode yang digunakan untuk menyelesaikan suatu permasalahan matematika yang kompleks melalui pendekatan secara numerikal. Matematika adalah ilmu pasti, akan tetapi kemarin saya menyadari bahkan di matematika pun tidak semua jawaban absolut atau eksak (pasti). Contoh dari soal (x-1)^2/(x-1) dengan x = 1. Apabila langsung disubstitusikan maka hasilnya ada 0/0 atau tidak terdefinisikan, sedangkan apabila dijabarkan melalui pendekatan secara limit, maka hasilnya adalah 2. Akan tetapi 2 juga bukan merupakan jawaban eksak karena pendekatan secara limit menjadikan x mendekati 1, bukan x = 1 (absolut). Oleh karena itu, di dunia ini yang abosolut hanyalah Tuhan Yang Maha Esa. Pada pertemuan kemarin, saya juga mempelajari tentang “counciousness”. Dalam menyelesaikann suatu permasalahan, kita harus “councious” mengenai permasalahan tersebut dan mencari solusi untuk menyelesaikannya. Selain itu, kami juga mendapatkan tugas untuk mendesain 1 liter tabung hidrogen dengan tekanan 8 bar dan biaya maksimal Rp. 500.000,00

Design & Optimization of Pressurized Hydrogen Storage

To design and optimizing a Hydrogen Storage with specification: Volume: 1 Liter Pressure: 8 bar Budget: Rp.500.000,00 I use ChatGPT and here are the steps in designing and optimizing a Hydrogen Storage:

Select Storage Method

Choose the appropriate method for hydrogen storage based on your requirements. Common methods include compressed gas cylinders, cryogenic liquid storage, or solid-state hydrogen storage materials. Each method has its advantages and considerations in terms of cost, efficiency, and safety.

Material Selection

Select suitable materials for your chosen storage method. For compressed gas cylinders, consider materials such as steel or aluminum alloys with high tensile strength and compatibility with hydrogen. For cryogenic storage, choose materials with low-temperature resistance. For solid-state storage, explore materials with high hydrogen storage capacity.

Design and Engineering

Develop a design for the storage system, considering factors such as pressure vessels, insulation, valves, fittings, and safety mechanisms. Engage with engineers and experts in the field to ensure compliance with safety standards and optimize the design for performance and cost.

Manufacturing Process

Explore cost-effective manufacturing processes such as seamless cylinder fabrication or efficient welding techniques.

Cost Optimization

Consider cost optimization techniques to stay within your budget. Explore options such as optimizing the size and shape of the storage vessel, minimizing material usage while maintaining safety requirements, and considering cost-effective manufacturing processes.

Simulation and Analysis

Utilize numerical simulations and analysis tools to evaluate the performance and safety of the storage system design. Perform stress analysis, pressure simulations, and leakage assessments to ensure the system's integrity and reliability.

Prototype and Testing

Build a prototype based on the optimized design and conduct thorough testing to validate the performance and safety of the storage system. This step is crucial to identify any design flaws or operational issues before implementation.

Compliance and Certification

Ensure compliance with applicable regulations, standards, and certifications for hydrogen storage systems. Consult with relevant authorities and certification bodies to meet the required safety and performance criteria.


Final Report of Optimization of Pressurized Hydrogen Storage

Material yang digunakan adalah Stainless Steel 304

Thickness

    def calculate_optimized_thickness(volume, pressure):
    # Stainless Steel properties
    yield_strength = 205e6  # Yield strength of the stainless steel in Pascals
    safety_factor = 3  # Desired safety factor
    
    # Conversion factors
    bar_to_pa = 1e5  # Bar to Pascal conversion factor
    
    # Convert pressure to Pascal
    pressure_pa = pressure * bar_to_pa
    
    # Calculate the radius of the cylinder using the given volume
    radius = (3 * volume / (4 * math.pi))**(1/3)
    
    # Calculate the hoop stress
    hoop_stress = pressure_pa * radius / 2
    
    # Calculate the required thickness
    thickness = hoop_stress * safety_factor / yield_strength
    
    # Convert thickness to millimeters
    thickness_mm = thickness * 1000
    
    return thickness_mm

# Input parameters
volume = 1  # 1-liter capacity
pressure = 8  # 8 bar pressure

# Calculate the optimized thickness
optimized_thickness = calculate_optimized_thickness(volume, pressure)

print(f"The optimized thickness of the stainless steel hydrogen storage vessel is {optimized_thickness:.2f} mm.")

The optimized thickness of the stainless steel hydrogen storage vessel is 3.63 mm.

Heigth and Diameter

   import math

def calculate_surface_area(radius, height):
    # Calculate the surface area of the tube
    base_area = math.pi * radius**2
    lateral_area = 2 * math.pi * radius * height
    surface_area = 2 * base_area + lateral_area

    return surface_area

def find_optimal_dimensions(volume, pressure, tensile_strength):
    # Convert volume from mL to cm^3
    volume_cm3 = volume

    # Convert pressure from bar to Pascal
    pressure_pa = pressure * 100000

    # Initialize variables for optimal dimensions
    optimal_radius = None
    optimal_height = None
    min_surface_area = float('inf')

    # Iterate over possible radius values
    for radius in range(1, int(math.sqrt(volume_cm3 / math.pi)) + 1):
        # Calculate the corresponding height for the given volume and radius
        height = volume_cm3 / (math.pi * radius**2)

        # Calculate the surface area for the current dimensions
        surface_area = calculate_surface_area(radius, height)

        # Check if the current surface area is the lowest found so far
        if surface_area < min_surface_area:
            min_surface_area = surface_area
            optimal_radius = radius
            optimal_height = height

    # Convert optimal radius to centimeters
    optimal_radius_cm = optimal_radius

    return optimal_radius_cm, optimal_height

# Define the input parameters
volume = 1000  # 1 liter = 1000 mL
pressure = 8  # bar
tensile_strength = 310  # MPa

# Find the optimal dimensions
optimal_radius_cm, optimal_height = find_optimal_dimensions(volume, pressure, tensile_strength)

# Display the results
print(f"Dimensi yang menghasilkan luas permukaan terendah untuk tabung 1 liter dengan tekanan 8 bar yang terbuat dari Alumunium Alloy 6061:")
print(f"Radius: {optimal_radius_cm} cm")
print(f"Tinggi: {optimal_height} cm")

Dimensi yang menghasilkan luas permukaan terendah untuk tabung 1 liter dengan tekanan 8 bar yang terbuat dari Stainless Steel:

Radius: 5 cm

Tinggi: 12.732395447351626 cm

Surface Area

def calculate_surface_area(radius, height):
    return 2 * math.pi * radius * (radius + height)

def find_surface_area():
    # Konversi radius, tinggi, dan ketebalan plat menjadi cm
    radius_cm = 5
    height_cm = 12.732
    thickness_mm = 3.63

    # Konversi kapasitas dalam liter menjadi volume dalam cm^3
    volume = 1000

    # Konversi tekanan dalam bar menjadi tekanan dalam Pa
    pressure = 8 * 10**5

    # Kekuatan tarik baja dalam Pa
    tensile_strength = 600 * 10**6

    # Konversi ketebalan plat menjadi cm
    thickness_cm = thickness_mm / 10

    # Hitung jari-jari dalam cm
    inner_radius = radius_cm - thickness_cm

    # Hitung tinggi dalam cm
    inner_height = height_cm - (2 * thickness_cm)

    # Hitung luas permukaan tabung dalam cm^2
    surface_area = calculate_surface_area(inner_radius, inner_height)

    # Periksa apakah tekanan dalam batas kekuatan tarik baja
    if surface_area * pressure <= tensile_strength:
        return surface_area
    else:
        return None

# Panggil fungsi untuk mencari luas permukaan tabung
surface_area = find_surface_area()

# Tampilkan hasil
if surface_area is not None:
    print("Luas permukaan tabung hidrogen adalah ", surface_area, " cm^2")
else:
    print("Luas permukaan tabung melebihi batas kekuatan tarik baja.")

Luas permukaan tabung hidrogen adalah 484.8959730734868 cm^2

Harga

Harga material plat Stainless Steel 304 per 1 cm^2 dengan tebal 5 mm (sumber tokopedia) adalah Rp.350

Maka harga untuk plat Stainless Steel 304 dengan luas 484.895 cm^2 adalah Rp.169.713,25 atau Rp. 170.000,00

Harga regulator untuk 140 psi (8 bar)(sumber tokopedia) adalah Rp. 287.000

Sehingga, total biaya yang digunakan sebesar Rp. 457.000,00

Kesimpulan

Volume = 1 liter

Pressure = 8 bar

Budget = Rp. 500.000,00

Material = Stainless Steel 304

Yield Strength = 205 MPa

Tensile Strength = 600 MPa

Ketebalan Tabung = 3.63 mm

Radius = 5 cm

Tinggi = 12.732395447351626 cm

Luas Permukaan = 484.8959730734868 cm^2

Cost :

Plat Stainless Steel 304 = Rp.169.713,25 atau Rp. 170.000,00

Regulator 140 psi (8 bar)= Rp. 287.000

Total biaya = Rp. 457.000,00

My Concious Effort on Numerical Method Learning and Its Application in Hydrogen Storage Design