Difference between revisions of "Hariyotejo Pujowidodo"
(→BAB 4 PEMODELAN DAN SIMULASI) |
(→BAB 4 PEMODELAN DAN SIMULASI) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 83: | Line 83: | ||
− | [[File: 05KonturP-T-rho-Ma CD Nozzle.jpg|center| | + | [[File: 05KonturP-T-rho-Ma CD Nozzle.jpg|center|500px|Kontur P, T, Ma, dan Rho Model Confined Jet Converging-Diverging Nozzle –EES dan CFDSOF [paper-3]]] |
− | [[File: 05Komparasik-e-RNG-RSM CD Nozzle.jpg|center| | + | [[File: 05Komparasik-e-RNG-RSM CD Nozzle.jpg|center|500px|Komparasi Model Turbulen k-, RNG, & RSM Confined Jet CD Nozzle –CFDSOF [paper-3]]] |
− | [[File: 05 Structured vs Curved Grid Analis Turb.jpg|center| | + | [[File: 05 Structured vs Curved Grid Analis Turb.jpg|center|500px|Geometri dan 2 Model Mesh Confined Jet CD Nozzle –CFDSOF [paper-4]]] |
− | [[File: 05 Grid Indep test structured vs curved analis turb.jpg|center| | + | [[File: 05 Grid Indep test structured vs curved analis turb.jpg|center|500px|Grid Independency test untuk Perbedaan Model Mesh Confined Jet CD Nozzle –CFDSOF [paper-4]]] |
</center> | </center> | ||
Line 97: | Line 97: | ||
<center>Gambar- xx. Alur Pemodelan Parameter Geometri Nosel CD pada sistem Bio-Micro PP [paper-6] | <center>Gambar- xx. Alur Pemodelan Parameter Geometri Nosel CD pada sistem Bio-Micro PP [paper-6] | ||
− | [[File: 05mdotsteam_vs_throat&exitnosel.jpg|center| | + | [[File: 05mdotsteam_vs_throat&exitnosel.jpg|center|500px|Pengaruh Laju Uap Terhadap Dimensi Throat dan Oulet Nosel Supersonik – EES solver [paper 6]]] |
− | [[File: 05mdot_psteam_vs_velNosel.jpg|center| | + | [[File: 05mdot_psteam_vs_velNosel.jpg|center|500px|Pengaruh Laju Steam pada Kecepatan Nosel dengan Tekanan Motif Uap tertentu - EES Solver [paper-6]]] |
− | [[File: 05Kontur k u k-e-RNG-RSM.jpg|center| | + | [[File: 05Kontur k u k-e-RNG-RSM.jpg|center|500px|Kontur P, T, Ma, dan Rho Model Confined Jet Converging-Diverging Nozzle –EES dan CFDSOF [paper-3]]] |
− | [[File: 05Komparasik-e-RNG-RSM CD Nozzle.jpg|center| | + | [[File: 05Komparasik-e-RNG-RSM CD Nozzle.jpg|center|500px|Komparasi Model Turbulen k-, RNG, & RSM Confined Jet CD Nozzle –CFDSOF [paper-3]]] |
− | [[File: 05Kontur eps u k-e-RNG-RSM.jpg|center| | + | [[File: 05Kontur eps u k-e-RNG-RSM.jpg|center|500px|Kontur Laju disipasi E. Kinetik Turbulen k-, RNG, & RSM Confined Jet CD Nozzle –CFDSOF [paper-3]]] |
− | [[File: 05Plot k-eps u k-e-RNG-RSM.jpg|center| | + | [[File: 05Plot k-eps u k-e-RNG-RSM.jpg|center|500px|Profil k dan Model Turbulen k-, RNG, & RSM Confined Jet CD Nozzle –CFDSOF [paper-3]]] |
− | [[File: | + | [[File: 05 Plot P&T structured vs Vurved Grid.jpg|center|500px|Profil Tekanan Statik dan Temperatur Confined Jet CD Nozzle –CFDSOF [paper-4]]] |
− | [[File: 05 Plot rho&Ma structured vs curved Grid.jpg|center| | + | [[File: 05 Plot rho&Ma structured vs curved Grid.jpg|center|500px|Profil Densitas dan Ma Confined Jet CD Nozzle –CFDSOF [paper-4]]] |
− | [[File: 05Kontur Ma structured vs cuved grid.jpg|center| | + | [[File: 05Kontur Ma structured vs cuved grid.jpg|center|500px|Kontur Ma dengan Perbedaan Model Mesh a Confined Jet CD Nozzle –CFDSOF [paper-4]]] |
− | [[File:05 Kontur k-eps structured vs curved grid.jpg|center| | + | [[File:05 Kontur k-eps structured vs curved grid.jpg|center|500px|Kontur k dan dengan Perbedaan Model Mesh a Confined Jet CD Nozzle –CFDSOF [paper-4]]] |
</center> | </center> | ||
Line 119: | Line 119: | ||
[[File: modif.jpg|center|500px|]] | [[File: modif.jpg|center|500px|]] | ||
− | <center>Gambar- 14. Alur Modifikasi Model Turbulen k-e Standar | + | <center>Gambar- 14. Alur Modifikasi Model Turbulen k-e Standar |
+ | |||
</center> | </center> | ||
Latest revision as of 09:49, 24 April 2020
Riset Disertasi :
INVESTIGASI MODEL TURBULENT k-ε STANDAR DALAM APLIKASI CFD UNTUK OPTIMASI KETELITIAN HASIL PREDIKSI DINAMIKA ALIRAN FLUIDA KOMPRESIBEL CONFINED-JET
Contents
ABSTRAK
BAB 1 PENDAHULUAN
1.1. Latar Belakang
1.2. Tujuan dan Sasaran Penelitian
1.3. State of the Art
1.4. Ruang Lingkup
BAB 2 TINJAUAN LITERATUR
2.1. Hidrodinamika Aliran Jet
2.2. Pemodelan Turbulen
2.2.1. Konservasi Fisik dan Persamaan Atur
2.2.2. Konservasi Massa
2.2.3. Konservasi Momentum
2.2.4. Konservasi Energi
2.2.5. Persamaan Termodinamika
2.2.6. Persamaan Navier-Stokes dan Bentuk Umum Persamaan Transport
2.2.7. Turbulen dan Persamaan Reynolds Averaged Navier Stokes (RANS)
2.3. Critical Review
BAB 3 METODOLOGI DAN JADWAL PENELITIAN
3.1. Metodologi Penelitian
Gambar- 15. Prosedur Pemecahan dengan Model CFD (Keynote Speech SNMI XII, 2018)
3.2. Jadwal Penelitian
Gambar- 16. Rancangan Penelitian
BAB 4 PEMODELAN DAN SIMULASI
4.1. Hidrodinamika Aliran Kompresibel Nosel Supersonik dan Jet Ejector
4.2. Studi Parameter Aliran dan Turbulensi
4.3. Modifikasi dan Optimasi Model Turbulen k-e Standar pada Jet Ejector
BAB 5 HASIL DAN ANALISA
5.1. Pengaruh Turbulensi pada Perubahan Parameter Tekanan Aliran dan Posisi Nosel
5.2. Laju Regangan Daerah Lapisan Batas Pencampuran pada Jet Ejector Udara
5.3. Parameter Optimasi Model Turbulen k-ε Standar
BAB 6 KESIMPULAN DAN SARAN
1.
Publikasi paper :
1. Optimization Study on Standard k-e Model for a Better Prediction of Turbulent Flow in Sub-Sonic Air Jet Ejector (Journal paper draft)
2. New Modified k-ε Standard for Predicting Compressible Flow in a Non-Symmetrical Planar-Curvature Converging-Diverging Supersonic Nozzle (submitted Journal Manuscript)
3. Turbulent Modeling Analysis of Saturated Steam Flow in Curved Convergent Divergent Nozzle / Batavia International Conference (BIC 2018) Sustainable Maritime Science and Engineering Development 21st November 2018, University of Darma Persada, Published 1 February 2020 • Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, Volume 1469, International Conference on Innovation In Research 28–29 August 2018, Bali, Indonesia
4. Numerical simulation analysis of supersonic asymmetric converging-diverging nozzle with stepped curvature and curved discretization / The 4th International Conference on Mechanical Engineering (ICOME) 28-29 August 2019, Yogyakarta, Indonesia, AIP Conference Proceedings 2187, 020010 (2019); https://doi.org/10.1063/1.5138265.
5. The Analytic and CFD Modeling Studies of Saturated Steam Mass Flow in Curved Convergent Divergent Nozzle / International Conference on Advanced Thermofluids X 16th November 2018, Department of Mechanical Engineering, University of Indonesia, AIP Conference Proceedings 2062, 020015 (2019); https://doi.org/10.1063/1.5086562
6. SIMULATIONS OF BIO-MICRO HIGH POWER DENSITY POWER GENERATION SYSTEM FOR ZERO ENERGY BUILDING / International Conference on Sustainable Infrastructure and urban Development I 12-14th November, 2018 University of Indonesia and Asean University Network, Published at: CSID - JID Vol 2, No 1 (2019) DOI: https://doi.org/10.32783/csid-jid.v2i1.46.
7. The Study of Converging-Diverging Nozzle for Improving the Impulse Momentum of Cross Flow Turbine in a Bio-Micro Power Plant / International Conference on Biomass 1-2nd August, 2018 Agriculture Institute of Bogor, Published 1 December 2018 • Published under licence by IOP Publishing Ltd IOP Conference Series: Earth and Environmental Science, Volume 209, 3rd International Conference on Biomass: Accelerating the Technical Development and Commercialization for Sustainable Bio-based Products and Energy1–2 August 2018, Bogor, Indonesia
8. Integrated Analysis of The Excess Air on Steam Power Plant CFB Boiler using Mathematical and CFD Modeling / International Conference Thermofluid IX 9-10th November, 2017 Faculty of Industrial Engineering University of Gajah Mada Yogyakarta, AIP Conference Proceedings 2001, 060003 (2018); https://doi.org/10.1063/1.5050004
9. Mathematical Modeling - The Impact of Cooling Water Temperature Upsurge on Combined Cycle Power Plant Performance and Operation / Published 1 March 2018 • Published under licence by IOP Publishing Ltd IOP Conference Series: Materials Science and Engineering, Volume 316, Quality in Research: International Symposium on Materials, Metallurgy, and Chemical Engineering 24–27 July 2017, Bali, Indonesia.