Difference between revisions of "Ridwan Sholehan"

From ccitonlinewiki
Jump to: navigation, search
(Design Calculation of Hydrogen Storage Tank with Python Coding)
(Design Calculation of Hydrogen Storage Tank with Python Coding)
Line 206: Line 206:
 
     from mpl_toolkits.mplot3d import Axes3D
 
     from mpl_toolkits.mplot3d import Axes3D
 
     import numpy as np
 
     import numpy as np
 
 
     # Input parameters
 
     # Input parameters
 
     diameter = 0.1  # Diameter tabung dalam meter
 
     diameter = 0.1  # Diameter tabung dalam meter
Line 212: Line 211:
 
     height = 1.0  # Tinggi tabung dalam meter
 
     height = 1.0  # Tinggi tabung dalam meter
 
     resolution = 100  # Resolusi lingkaran permukaan tabung
 
     resolution = 100  # Resolusi lingkaran permukaan tabung
 
 
     # Menghitung radius tabung
 
     # Menghitung radius tabung
 
     radius = diameter / 2
 
     radius = diameter / 2
 
 
     # Menghasilkan koordinat titik-titik pada permukaan tabung
 
     # Menghasilkan koordinat titik-titik pada permukaan tabung
 
     theta = np.linspace(0, 2 * np.pi, resolution)
 
     theta = np.linspace(0, 2 * np.pi, resolution)
 
     z = np.linspace(0, height, resolution)
 
     z = np.linspace(0, height, resolution)
 
     Theta, Z = np.meshgrid(theta, z)
 
     Theta, Z = np.meshgrid(theta, z)
 
 
     # Koordinat penutup atas tabung (elips)
 
     # Koordinat penutup atas tabung (elips)
 
     X_top = radius * np.cos(Theta)
 
     X_top = radius * np.cos(Theta)
 
     Y_top = radius * np.sin(Theta)
 
     Y_top = radius * np.sin(Theta)
 
     Z_top = np.ones_like(X_top) * height
 
     Z_top = np.ones_like(X_top) * height
 
 
     # Koordinat penutup bawah tabung (elips)
 
     # Koordinat penutup bawah tabung (elips)
 
     X_bottom = radius * np.cos(Theta)
 
     X_bottom = radius * np.cos(Theta)
 
     Y_bottom = radius * np.sin(Theta)
 
     Y_bottom = radius * np.sin(Theta)
 
     Z_bottom = np.ones_like(X_bottom) * 0
 
     Z_bottom = np.ones_like(X_bottom) * 0
 
 
     # Koordinat permukaan tabung
 
     # Koordinat permukaan tabung
 
     X_cylinder = radius * np.cos(Theta)
 
     X_cylinder = radius * np.cos(Theta)
 
     Y_cylinder = radius * np.sin(Theta)
 
     Y_cylinder = radius * np.sin(Theta)
 
     Z_cylinder = Z
 
     Z_cylinder = Z
 
 
     # Membuat plot 3D
 
     # Membuat plot 3D
 
     fig = plt.figure()
 
     fig = plt.figure()
 
     ax = fig.add_subplot(111, projection='3d')
 
     ax = fig.add_subplot(111, projection='3d')
 
 
     # Menggambar permukaan tabung
 
     # Menggambar permukaan tabung
 
     ax.plot_surface(X_cylinder, Y_cylinder, Z_cylinder, alpha=0.5)
 
     ax.plot_surface(X_cylinder, Y_cylinder, Z_cylinder, alpha=0.5)
 
 
     # Menggambar penutup atas tabung (elips)
 
     # Menggambar penutup atas tabung (elips)
 
     ax.plot_surface(X_top, Y_top, Z_top, alpha=0.5)
 
     ax.plot_surface(X_top, Y_top, Z_top, alpha=0.5)
 
 
     # Menggambar penutup bawah tabung (elips)
 
     # Menggambar penutup bawah tabung (elips)
 
     ax.plot_surface(X_bottom, Y_bottom, Z_bottom, alpha=0.5)
 
     ax.plot_surface(X_bottom, Y_bottom, Z_bottom, alpha=0.5)
 
 
     # Mengatur batas sumbu x, y, dan z
 
     # Mengatur batas sumbu x, y, dan z
 
     ax.set_xlim(-radius, radius)
 
     ax.set_xlim(-radius, radius)
 
     ax.set_ylim(-radius, radius)
 
     ax.set_ylim(-radius, radius)
 
     ax.set_zlim(0, height)
 
     ax.set_zlim(0, height)
 
 
     # Memberikan label pada sumbu x, y, dan z
 
     # Memberikan label pada sumbu x, y, dan z
 
     ax.set_xlabel('X')
 
     ax.set_xlabel('X')
 
     ax.set_ylabel('Y')
 
     ax.set_ylabel('Y')
 
     ax.set_zlabel('Z')
 
     ax.set_zlabel('Z')
 
 
     # Memberikan judul pada plot
 
     # Memberikan judul pada plot
 
     ax.set_title('Gambarkan Tabung Silinder dengan Penutup Elips')
 
     ax.set_title('Gambarkan Tabung Silinder dengan Penutup Elips')
 
 
     # Menampilkan plot
 
     # Menampilkan plot
 
     plt.show()
 
     plt.show()

Revision as of 00:39, 12 June 2023

INTRODUCTION

Ridwan - Intro.jpg


Nama  :Ridwan Sholehan

NPM  :2206100312

Motto Hidup:

    "Jangan Terlalu Terpaku Akan Suatu Penyesalan, Yang Terpenting Adalah Bagaimana Langkah Untuk Membangun Masa Depan Yang Lebih Baik"


Introduction About The Advantages of Hydrogen as a Fuel

Hidrogen pada Kendaraan.jpg

Much research currently focuses on the use of hydrogen as a vehicle fuel for several reasons:

1. ---Eco-Friendly--- Hydrogen as a vehicle fuel produces cleaner emissions compared to fossil fuels such as gasoline and diesel. When hydrogen is burned, no carbon dioxide emissions are produced, only pure water (H2O) as a byproduct. This helps reduce the negative impact of climate change and air pollution.

2. ---Energy Efficiency--- Hydrogen has a high energy potential and can produce more power compared to conventional fuels with a lower weight. This means vehicles that use hydrogen as fuel can have better performance and longer ranges with smaller tanks.

3. ---Renewable Energy Sources--- Hydrogen can be produced using renewable energy sources such as solar energy and wind energy through the process of electrolysis of water. By leveraging renewable energy sources to produce hydrogen, we can reduce our dependence on fossil fuels and accelerate the transition to clean energy.

4. ---Scalable Infrastructure--- One of the advantages of hydrogen is its ability to be stored and transported in large quantities. This means hydrogen can be integrated into existing infrastructure, such as existing natural gas networks or oil pipelines. This facilitates the development of hydrogen charging infrastructure for vehicles and accelerates the adoption of this technology.

Study Case: Optimization Hydrogen Storage

Hydrogen Storage Requirement


In this case we want to build a storage with:

1. Capacity : 1 Liter.

2. Pressure : 8 Bar.

3. Budget  : Rp. 500.000,-

4. Can be installed in a vehicle such as a motorcycle.

Material Classification


Hydrogen storage materials can be of different types:

1. dissociative material in which molecular hydrogen is dissociated into hydrogen atoms, which occupy interstitial sites.

2. material with chemically bound hydrogen.

3. materials that adsorb molecular hydrogen.

Hydrogen storage in solid form can be briefly classified into the following categories:

1. metal hydrides

2. light metal-based hydrides

3. chemical hydrides (complex hydrides)

4. nanostructured materials (adsorption of molecular hydrogen)

Refers to the type above. There is a material that can be used to build storage. Hydrogen Magnesium Hydride (MgH2) storage material by inserting a double catalyst, namely Iron Oxide (Fe2O3) and Silicon Carbide (SiC) each of 5wt% as an effort to improve the absorption properties and reaction kinetics of magnesium-based hydrogen storage materials.

Design of Storage Tank


Storage Tank.png

This is a reference to the design of the storage hydrogen Tank. this design has several advantages because it will be installed in a vehicle it has to be lightweight, high durability, and efficient to be used in the vehicle.

Calculation of Hydrogen Storage


Volume Storage.png

Specification:

1. Capacity --> Volume : 1 liter = 0.001 m^3

2. Because this storage will be installed in vehicles, which means having limited space. we can assume for :

R : 10 cm = 0.1 m

r : 5 cm = 0.05 m

For the bottom and top of a vertical tank, for provided values for R and r as described above, and content bisector y, with numerical ranges of 0 <= y <= r, and L+r <= y <= L+2r (with some technical adjustments of the range of y and of the resulting volume for the top ellipse):

Screenshot 2023-05-29 092048.png

And for the cylinder in the middle, for a provided value of R (cylinder radius) and with the numerical range of r <= y <= L+r

Screenshot 2023-05-29 092547.png

So we can get L from the equation above:

y = 0.081 m

Tank Testing and Safety Consideration


In accordance with ISO/TS 15869 (revised):

1. Burst test: the pressure at which the tank bursts, typically more than 2× the working pressure.

2. Proof pressure: the pressure at which the test will be executed, typically above the working pressure.

3. Leak test or permeation test,[9] in NmL/hr/L (Normal liter of H2/time in hr/volume of the tank.)

4. Fatigue test, typically several thousand cycles of charging/emptying.

5. Bonfire test where the tank is exposed to an open fire.

6. Bullet test where live ammunition is fired at the tank.

Design Calculation of Hydrogen Storage Tank

1. Choose Material


For Material, we can use composite material such as steel aluminum, because is prepared for fabrication. This material can be easy for manufacturing processes such as cutting, shaping, or molding the material into the desired form for the tank components.

2. Spesification For Tank


Pressure Tank : 8 bar Volume Tank  : 1 liter : 0.001 m^3 Budget  : 500.000,-

3. Design Tank


1. Design Tank

Assume diameter for tank is 10 cm : 0.1 m

V = πr^2h 0.001 = π . (0.05^2) . h h = 0.127 m or can we round it up 0.15 m

2. Permissible Pressure (using safety factor)

P = 8 bar = 8 x 10^5 Pa

Permissible Pressure = 8 x 10^5 Pa x 3 = 24 x 10^5 Pa


3. Standard From ASME VIII

Joint efficiency (E)  : 0.85 MAWS (SS-304 Seamless Pipe) : 30000 psi OD  : 100 mm OR  : 50 mm Corrosion Allowance (CA)  : 0.25 mm Thickness (ta)  : 1.27 mm Thickness (t) = (ta-CA)  : 1.02 mm

4. Manufacturing Process

Because that shape of the material is plat, we can use manufacturing processes is:

1. Cutting

2. Bending

3. Forming

4. Welding

5. Tank Testing and Safety Consideration

In accordance with ISO/TS 15869 (revised):

1. Burst test: the pressure at which the tank bursts, typically more than 2× the working pressure.

2. Proof pressure: the pressure at which the test will be executed, typically above the working pressure.

3. Leak test or permeation test,[9] in NmL/hr/L (Normal liter of H2/time in hr/volume of the tank.)

4. Fatigue test, typically several thousand cycles of charging/emptying.

5. Bonfire test where the tank is exposed to an open fire.

6. Bullet test where live ammunition is fired at the tank.


Design Calculation of Hydrogen Storage Tank with Python Coding

This is a Final Progress to getting the design of the Hydrogen Storage Tank. in this calculation I will use a python code:

    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    import numpy as np
    # Input parameters
    diameter = 0.1  # Diameter tabung dalam meter
    thickness = 0.00127  # Ketebalan plat dalam meter
    height = 1.0  # Tinggi tabung dalam meter
    resolution = 100  # Resolusi lingkaran permukaan tabung
    # Menghitung radius tabung
    radius = diameter / 2
    # Menghasilkan koordinat titik-titik pada permukaan tabung
    theta = np.linspace(0, 2 * np.pi, resolution)
    z = np.linspace(0, height, resolution)
    Theta, Z = np.meshgrid(theta, z)
    # Koordinat penutup atas tabung (elips)
    X_top = radius * np.cos(Theta)
    Y_top = radius * np.sin(Theta)
    Z_top = np.ones_like(X_top) * height
    # Koordinat penutup bawah tabung (elips)
    X_bottom = radius * np.cos(Theta)
    Y_bottom = radius * np.sin(Theta)
    Z_bottom = np.ones_like(X_bottom) * 0
    # Koordinat permukaan tabung
    X_cylinder = radius * np.cos(Theta)
    Y_cylinder = radius * np.sin(Theta)
    Z_cylinder = Z
    # Membuat plot 3D
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    # Menggambar permukaan tabung
    ax.plot_surface(X_cylinder, Y_cylinder, Z_cylinder, alpha=0.5)
    # Menggambar penutup atas tabung (elips)
    ax.plot_surface(X_top, Y_top, Z_top, alpha=0.5)
    # Menggambar penutup bawah tabung (elips)
    ax.plot_surface(X_bottom, Y_bottom, Z_bottom, alpha=0.5)
    # Mengatur batas sumbu x, y, dan z
    ax.set_xlim(-radius, radius)
    ax.set_ylim(-radius, radius)
    ax.set_zlim(0, height)
    # Memberikan label pada sumbu x, y, dan z
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    # Memberikan judul pada plot
    ax.set_title('Gambarkan Tabung Silinder dengan Penutup Elips')
    # Menampilkan plot
    plt.show()