Difference between revisions of "Phyton Code"
Line 150: | Line 150: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
+ | |||
+ | Dari coding di atas di dapatkan hasil sebagai berikut : | ||
[[File:bbbalvino.png|500x300px]] | [[File:bbbalvino.png|500x300px]] |
Revision as of 00:10, 12 June 2023
Untuk mengoptimisasi penyimpanan hidrogen pada tekanan 8 bar dengan kapasitas 1 liter dan anggaran maksimal Rp500.000, dapat diselesaikan dengan phyton code dibawah :
from scipy.optimize import minimize
# Harga dan kapasitas
harga_per_unit = 100000 # Harga per unit penyimpanan hidrogen
kapasitas_per_unit = 1 # Kapasitas penyimpanan hidrogen per unit
# Anggaran maksimal
budget_maksimal = 500000
# Fungsi tujuan
def fungsi_tujuan(x):
return -x
# Kendala
def kendala(x):
return budget_maksimal - (harga_per_unit * x[0])
kendala_anggaran = [{'type': 'ineq', 'fun': kendala}]
# Nilai awal
x0 = [0]
# Batasan
batas = [(0, None)]
# Membuat fungsi untuk menampilkan hasil
def tampilkan_hasil(solusi):
print("Status:", "Optimal" if solusi.success else "Tidak ditemukan solusi")
print("Jumlah unit penyimpanan hidrogen yang akan dibeli:", solusi.x[0])
print("Total kapasitas penyimpanan:", solusi.x[0] * kapasitas_per_unit, "liter")
print("Total biaya:", solusi.x[0] * harga_per_unit, "Rupiah")
# Menyelesaikan masalah optimisasi
solusi = minimize(fungsi_tujuan, x0, method='SLSQP', bounds=batas, constraints=kendala_anggaran)
# Menampilkan hasil
tampilkan_hasil(solusi)
Kode di atas menggunakan fungsi tujuan untuk memaksimalkan jumlah unit penyimpanan hidrogen yang akan dibeli. Kendala anggaran diatur menggunakan fungsi kendala, yang memastikan bahwa total biaya tidak melebihi anggaran maksimal yang diberikan. Output akan menampilkan jumlah unit yang harus dibeli, total kapasitas penyimpanan, dan total biaya yang dibutuhkan. Di bawah ini merupakan hasil dari phyton code tersebut :
Untuk menunjukan grafik mengenai optimisasi penyimpanan hidrogen antara kapasitas dan anggaran dapat digunakan phyton code di bawah ini :
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
# Harga dan kapasitas
harga_per_unit = 100000 # Harga per unit penyimpanan hidrogen
kapasitas_per_unit = 1 # Kapasitas penyimpanan hidrogen per unit
# Anggaran maksimal
budget_maksimal = 500000
# Fungsi tujuan
def fungsi_tujuan(x):
return -x
# Kendala
def kendala(x):
return budget_maksimal - (harga_per_unit * x[0])
kendala_anggaran = [{'type': 'ineq', 'fun': kendala}]
# Nilai awal
x0 = [0]
# Batasan
batas = [(0, None)]
# Membuat fungsi untuk menampilkan hasil
def tampilkan_hasil(solusi):
print("Status:", "Optimal" if solusi.success else "Tidak ditemukan solusi")
print("Jumlah unit penyimpanan hidrogen yang akan dibeli:", solusi.x[0])
print("Total kapasitas penyimpanan:", solusi.x[0] * kapasitas_per_unit, "liter")
print("Total biaya:", solusi.x[0] * harga_per_unit, "Rupiah")
# Menyelesaikan masalah optimisasi
solusi = minimize(fungsi_tujuan, x0, method='SLSQP', bounds=batas, constraints=kendala_anggaran)
# Menampilkan hasil
tampilkan_hasil(solusi)
# Menghasilkan grafik
anggaran = np.linspace(0, 10, 100) # Range anggaran
kapasitas = anggaran * kapasitas_per_unit # Total kapasitas penyimpanan untuk setiap anggaran
biaya = anggaran * harga_per_unit # Total biaya untuk setiap anggaran
plt.figure()
plt.plot(anggaran, kapasitas, label='Kapasitas Penyimpanan')
plt.plot(anggaran, biaya, label='Total Biaya')
plt.axhline(solusi.x[0] * kapasitas_per_unit, color='r', linestyle='--', label='Jumlah Unit Optimal')
plt.axvline(solusi.x[0], color='g', linestyle='--', label='Anggaran Optimal')
plt.xlabel('Anggaran')
plt.ylabel('Kapasitas/Biaya')
plt.title('Optimisasi Penyimpanan Hidrogen')
plt.legend()
plt.grid(True)
plt.show()
Kode di atas menghitung jumlah optimal unit penyimpanan hidrogen yang akan dibeli berdasarkan harga per unit, kapasitas per unit, dan anggaran maksimal yang diberikan. Kode ini memberikan solusi terbaik dengan kapasitas total tertinggi yang tetap berada dalam anggaran. Hasilnya kemudian dicetak, termasuk jumlah unit, kapasitas total, dan biaya total. Selain itu, kode ini juga membuat grafik yang menunjukkan hubungan antara kapasitan dan anggaran optimisasi penyimpanan hidrogen
Untuk menentukan ukuran pelat yang akan digunakan berdasarkan volume yang dibutuhkan, yaitu 1 liter, namun menggunakan luas pelat seminimal mungkin menggunakan perhitungan sebagai berikut:
import math
from scipy.optimize import minimize
def objective(x):
radius, height = x
return 2 * math.pi * radius**2 + 2 * math.pi * radius * height
def constraint(x):
radius, height = x
return math.pi * radius**2 * height - 1000
initial_guess = [1, 10] # Initial guess for the radius and height
# Define the bounds for the radius and height
bounds = [(0, None), (0, None)]
# Define the volume constraint
volume_constraint = {'type': 'eq', 'fun': constraint}
# Minimize the surface area subject to the volume constraint
result = minimize(objective, initial_guess, method='SLSQP', bounds=bounds,
constraints=volume_constraint)
optimal_radius = result.x[0]
optimal_height = result.x[1]
min_surface_area = result.fun
print(f"\n\nOptimal Radius: {optimal_radius} cm")
print(f"Optimal Height: {optimal_height} cm")
print(f"Minimum Surface Area: {min_surface_area} cm²\n\n")
Dari coding di atas di dapatkan hasil sebagai berikut :