Difference between revisions of "Metnum03 Edward Joshua Patrianus Mendrofa"

From ccitonlinewiki
Jump to: navigation, search
 
(2 intermediate revisions by the same user not shown)
Line 738: Line 738:
  
  
= UAS Metode Numerik 2020 =
+
= UAS Metode Numerik 2021 =
 +
 
 +
Berikut adalah jawaban dari UAS Metode Numerik 03
 +
 
 +
[[File:UAS Metnum03 Edward Joshua P M 1806233354-Halaman1.png|center|thumb|600px|Jawaban UAS Metode Numerik No.1]]
 +
 
 +
[[File:UAS Metnum03 Edward Joshua P M 1806233354-Halaman2.png|center|thumb|600px|Jawaban UAS Metode Numerik No.2]]
 +
 
 +
[[File:UAS Metnum03 Edward Joshua P M 1806233354-Halaman3.png|center|thumb|600px|Jawaban UAS Metode Numerik No.3]]
 +
 
 +
[[File:UAS Metnum03 Edward Joshua P M 1806233354-Halaman4.png|center|thumb|600px|Jawaban UAS Metode Numerik No.4,5,6]]
 +
 
 +
Untuk jawaban No. 7 akan saya tuliskan program yang saya gunakan untuk menyelesaikan soal tersebut:
 +
 
 +
{|class="wikitable"
 +
| '''Program Utama'''
 +
|-
 +
|
 +
 
 +
model SoalNo7
 +
  //inisiasi = [ elemen#, theta, A, E, L]
 +
  parameter Real [:,5] inisiasi = [1,      0, 2.011e-4, 1.9e11, 1; //isi sesuai data
 +
                                    2,      0, 2.011e-4, 1.9e11, 1;
 +
                                    3,    45, 2.011e-4, 1.9e11, 1;
 +
                                    4,    135, 2.011e-4, 1.9e11, 1];
 +
  //node = [ i, j]                       
 +
  parameter Integer [3,2] node = [1, 2; //isi sesuai data
 +
                                  2, 3;
 +
                                  1, 4,
 +
                                  2, 4,
 +
                                  3, 4];
 +
  //jumlah node
 +
    parameter Integer n = 4; //isi sesuai data                           
 +
  //titik node boundary
 +
    parameter Integer [:] Boundary = {3,4}; //isi sesuai data
 +
 
 +
                      //load = [ F1x,  F1y, F2x,F2y,F3x,F3y,F4x,F4y]                               
 +
    parameter Real [2*n] load = { 0, 1135562,  0,  0,  0,  0,  0,  0}; //isi sesuai data                       
 +
    Real [size(inisiasi,1)] k;
 +
    Real [size(inisiasi,1),4,4] Ke;
 +
    Real [size(inisiasi,1),2*n,2*n] Kg;
 +
    Real [2*n,2*n] KgTot;
 +
    Real [2*n,2*n] KgB;
 +
    Real [2*n] U;
 +
    Real [2*n] R;
 +
  //check force
 +
    Real [2] F;
 +
equation
 +
  k = {(inisiasi[i,3] * inisiasi[i,4] / inisiasi[i,5]) for i in 1:size(inisiasi,1)};
 +
  Ke = StiffnessMatrixElement(inisiasi); 
 +
  Kg = StiffnessMatrixGlobal(n, node, Ke); 
 +
  KgTot = SumStiffnessMatrixGlobal(Kg);
 +
  KgB = BoundaryStiffnessMatrixGlobal(KgTot, Boundary);
 +
  U = GaussJordan(KgB, load);
 +
  R = ReactionForce(KgTot, U, load);
 +
end SoalNo7;
 +
|}
 +
 
 +
{|class="wikitable"
 +
| '''Fungsi Panggil'''
 +
|-
 +
| '''Stiffness Matrix Elemen'''
 +
 
 +
Untuk membuat matriks kekakuan setiap elemen (matriks lokal)
 +
|-
 +
|
 +
function StiffnessMatrixElement
 +
  input Real [:,5] inisiasi_mat;
 +
  output Real [size(inisiasi_mat,1),4,4] Ke_mat;
 +
  protected
 +
    Real theta;
 +
    Real [3] StiffTrig;
 +
    Real [4,4] StiffTrans;
 +
    Real [size(inisiasi_mat,1)] k_vec;
 +
    Real float_error = 10e-10;
 +
algorithm
 +
  k_vec := {(inisiasi_mat[i,3] * inisiasi_mat[i,4] / inisiasi_mat[i,5]) for i in 1:size(inisiasi_mat,1)};
 +
  // Finding stiffness matrix of each element member
 +
  for i in 1:size(inisiasi_mat,1) loop
 +
  // Clearing the matrices
 +
  StiffTrig := zeros(3);
 +
  StiffTrans := zeros(4,4); 
 +
  // Converting degrees to radians
 +
  theta := Modelica.SIunits.Conversions.from_deg(inisiasi_mat[i,2]);
 +
  // {cos^2, sin^2, sincos}
 +
  StiffTrig := {(Modelica.Math.cos(theta))^2,
 +
                (Modelica.Math.sin(theta))^2,
 +
                (Modelica.Math.sin(theta)*Modelica.Math.cos(theta))}; 
 +
  // Handle float error elements in StiffTrig
 +
  for t in 1:size(StiffTrig,1) loop
 +
    if abs(StiffTrig[t]) <= float_error then
 +
      StiffTrig[t] := 0;
 +
    end if;
 +
  end for; 
 +
  // Construct stiffness transformation matrix
 +
  StiffTrans := [  StiffTrig[1],    StiffTrig[3], -1*StiffTrig[1], -1*StiffTrig[3];
 +
                  StiffTrig[3],    StiffTrig[2], -1*StiffTrig[3], -1*StiffTrig[2];
 +
                -1*StiffTrig[1], -1*StiffTrig[3],    StiffTrig[1],    StiffTrig[3];
 +
                -1*StiffTrig[3], -1*StiffTrig[2],    StiffTrig[3],    StiffTrig[2]]; 
 +
  // Multiply in stiffness constant of element, add final stiffness matrix to Ke_mat
 +
  for m in 1:4 loop
 +
    for n in 1:4 loop
 +
      Ke_mat[i,m,n] := k_vec[i] * StiffTrans[m,n];
 +
    end for;
 +
  end for;
 +
  end for;
 +
end StiffnessMatrixElement;
 +
|-
 +
| '''Stiffness Matrix Global'''
 +
 
 +
Untuk memindahkan matriks lokal menjadi matriks global
 +
|-
 +
|
 +
function StiffnessMatrixGlobal
 +
  input Integer x;
 +
  input Integer [:,2] n;
 +
  input Real [:,4,4] Ke_mat;
 +
  output Real [size(Ke_mat,1),2*x,2*x] Kg_mat; 
 +
algorithm
 +
  Kg_mat := zeros(size(Ke_mat,1),2*x,2*x);
 +
  for i in 1:size(Ke_mat,1) loop
 +
    Kg_mat[i,2*n[i,1],2*n[i,1]]:=Ke_mat[i,2,2];
 +
    Kg_mat[i,2*n[i,1]-1,2*n[i,1]-1]:=Ke_mat[i,1,1];
 +
    Kg_mat[i,2*n[i,1],2*n[i,1]-1]:=Ke_mat[i,2,1];
 +
    Kg_mat[i,2*n[i,1]-1,2*n[i,1]]:=Ke_mat[i,1,2];
 +
    Kg_mat[i,2*n[i,2],2*n[i,2]]:=Ke_mat[i,4,4];
 +
    Kg_mat[i,2*n[i,2]-1,2*n[i,2]-1]:=Ke_mat[i,3,3];
 +
    Kg_mat[i,2*n[i,2],2*n[i,2]-1]:=Ke_mat[i,4,3];
 +
    Kg_mat[i,2*n[i,2]-1,2*n[i,2]]:=Ke_mat[i,3,4];
 +
    Kg_mat[i,2*n[i,2],2*n[i,1]]:=Ke_mat[i,4,2];
 +
    Kg_mat[i,2*n[i,2]-1,2*n[i,1]-1]:=Ke_mat[i,3,1];
 +
    Kg_mat[i,2*n[i,2],2*n[i,1]-1]:=Ke_mat[i,4,1];
 +
    Kg_mat[i,2*n[i,2]-1,2*n[i,1]]:=Ke_mat[i,3,2];
 +
    Kg_mat[i,2*n[i,1],2*n[i,2]]:=Ke_mat[i,2,4];
 +
    Kg_mat[i,2*n[i,1]-1,2*n[i,2]-1]:=Ke_mat[i,1,3];
 +
    Kg_mat[i,2*n[i,1],2*n[i,2]-1]:=Ke_mat[i,2,3];
 +
    Kg_mat[i,2*n[i,1]-1,2*n[i,2]]:=Ke_mat[i,1,4];
 +
  end for; 
 +
end StiffnessMatrixGlobal;
 +
|-
 +
| '''Sum Matrix Global'''
 +
 
 +
Untuk menjumlahkan semua matrix global yang sudah diubah
 +
|-
 +
|
 +
function SumStiffnessMatrixGlobal
 +
  input Real [:,:,:] Kg_mat;
 +
  output Real [size(Kg_mat,2),size(Kg_mat,2)] KgTot_mat; 
 +
algorithm
 +
  for a in 1:size(Kg_mat,2) loop
 +
    for b in 1:size(Kg_mat,2) loop
 +
      KgTot_mat[a,b] := sum(Kg_mat [:,a,b]);
 +
    end for;
 +
    end for;
 +
end SumStiffnessMatrixGlobal;
 +
|-
 +
| '''Boundary Stiffness Matrix Global'''
 +
 
 +
Untuk menerapkan kondisi batas pada matriks global untuk mencari defleksi
 +
|-
 +
|
 +
function BoundaryStiffnessMatrixGlobal
 +
  input Real [:,:] KgTot_met;
 +
  input Integer[:] Boundary_met;
 +
  output Real [size(KgTot_met,1),size(KgTot_met,1)] KgB_met; 
 +
algorithm
 +
  for a in 1:size(KgTot_met,1) loop
 +
    for b in 1:size(KgTot_met,1) loop
 +
      KgB_met[a,b] := KgTot_met[a,b];
 +
    end for;
 +
  end for; 
 +
  for i in 1:size(KgTot_met,1) loop
 +
  for a in 1:size(Boundary_met,1) loop
 +
    for b in 0:1 loop
 +
      KgB_met[2*(Boundary_met[a])-b,i]:=0;
 +
      KgB_met[2*Boundary_met[a]-b,2*Boundary_met[a]-b]:=1;
 +
    end for;
 +
  end for;
 +
  end for;
 +
end BoundaryStiffnessMatrixGlobal;
 +
|-
 +
| '''Function Gauss Jordan'''
 +
 
 +
Untuk melakukan operasi Gauss Jordan
 +
|-
 +
|
 +
function GaussJordan
 +
  input Real [:,:] KgB_met;
 +
  input Real [size(KgB_met,1)] load_met;
 +
  output Real [size(KgB_met,1)] U_met; 
 +
  protected
 +
  Real float_error = 10e-10;
 +
algorithm
 +
  U_met:=Modelica.Math.Matrices.solve(KgB_met,load_met);
 +
  for i in 1:size(KgB_met,1) loop
 +
    if abs(U_met[i]) <= float_error then
 +
    U_met[i] := 0;
 +
    end if;
 +
  end for;
 +
end GaussJordan;
 +
|-
 +
|'''Reaction Force'''
 +
|-
 +
|
 +
function ReactionForce
 +
  input Real [:,:] KgTot_met;
 +
  input Real [size(KgTot_met,1)] U_met;
 +
  input Real [size(KgTot_met,1)] load_met;
 +
  output Real [size(KgTot_met,1)] R_met;
 +
  protected Real float_error = 10e-10;
 +
algorithm
 +
  R_met := KgTot_met*U_met-load_met; 
 +
  for t in 1:size(KgTot_met,1) loop
 +
    if abs(R_met[t]) <= float_error then
 +
      R_met[t] := 0;
 +
    end if;
 +
  end for;
 +
end ReactionForce;
 +
|}

Latest revision as of 00:30, 14 January 2021

Pertemuan Metode Numerik 03

Pertemuan 1

Metode Numerik adalah salah satu mata kuliah yang sangat banyak penerapannya dalam dunia keteknikan. Mata kuliah ini salah satu mata kuliah yang cukup menarik karena penerapannya sangat luas dan bermanfaat. Sejauh ini yang telah saya pelajari sebelum UTS mencakup 3 materi besar yaitu mencari akar-akar, regresi linier, dan turunan numerik.

1. Mencari Akar-Akar

Pada materi ini, saya mempelajari metode-metode untuk mencari akar secara numerik. Beberapa metode yang saya pelajari adalah metode pencarian akar menggunakan Closed methods (Bracketing Method) dan Open Methods.

Metode Closed Methods merupakan metode pencarian akar-akar dengan menggunakan batas atas dan batas bawah untuk mencari akar dan mengukur persentasi error yang didapat untuk mendapat tingkat akurasi dari iterasi. Metode yang saya pelajari ada 3 yaitu Graphical Methods, Bisection Methods, dan False-Position Methods.

Graphical Methods

Sebuah metode sederhana yang menggunakan grafik untuk memperkirakan akar-akar suatu fungsi. Metode ini dilakukan dengan melakukan plotting dari suatu fungsi ke dalam bentuk grafik.

Bisection Methods

Metode ini merupakan salah satu jenis metode incremental search method yang menggunakan batas atas dan batas bawah untuk mempersempit area pencarian akar-akar.

False-Position Methods

Rumus False Position Method

Metode ini sangat mirip dengan metode Bisection. Hal yang membedakan metode False-Position dengan Bisection adalah penentuan titik tengah dari batas-batas yang ditentukan. Penentuan titik tengah dari False-Position Method menggunakan persamaan berikut.

Metode Open Methods merupakan metode pencarian yang hanya menggunakan 1 titik untuk menemukan akar-akar. Metode ini dapat menggunakan turunan suatu fungsi untuk menentukan titik pengujian baru yang semakin dekat dengan nilai akar-akar yang diinginakn. Metode yang saya pelajari ada 3 yaitu Fixed-Point Iteration, Newton-Rapshon, dan Secant Method

Fixed-Point Iteration

Metode ini disebut juga metode iterasi sederhana, adalah metode yang memisahkan x dengan sebagian x yang lain sehingga diperoleh: x=g(x)

Newton-Raphson
Rumus Newton Rapshon

Metode ini menggunakan satu titik awal dan mendekatinya dengan memperhatikan slope atau gradien pada titik tersebut. Slop atau gradien didapatkan dengan melakukan turunan dari fungsi tersebut. Persamaan untuk Newton-Raphson adalah sebagai berikut:




Secant Method

Metode ini merupakan metode modifikasi Newton-Raphson dimana metode Newton-Raphson tidak digunakan (karena f'(x) sulit ditemukan atau tidak mungkin ditemukan). Persaman untuk metode Secant adalah sebagai berikut

Rumus Secant

2. Regresi Linier

regresi linear adalah sebuah pendekatan untuk memodelkan hubungan antara variable terikat Y dan satu atau lebih variable bebas yang disebut X. Salah satu kegunaan dari regresi linear adalah untuk melakukan prediksi berdasarkan data-data yang telah dimiliki sebelumnya. Hubungan di antara variable-variabel tersebut disebut sebagai model regresi linear.

Persamaan umum Regresi Linier adalah sebagai berikut:

Rumus-regresi-linier-umum.png

dimana:

Konstanta-regresi-linier.png

3. Turunan Numerik

Turunan Numerik adalah menentukan hampiran nilai turunan fungsi f yang diberikan dalam bentuk tabel. Terdapat 3 pendekatan dalam menghitung turunan numerik:

Numerical-difference-approx.png

Tugas Pertemuan 1: OpenModelica

Setelah pertemuan 1, pak Dai meminta kami untuk mempelajari OpenModelica

Untuk mempelajari OpenModelica, saya menggunakan referensi/tutorial dari YouTube dengan tautan berikut:

https://www.youtube.com/watch?v=SW5Eclf1tRs

https://www.youtube.com/watch?v=m0Ahs8fEN28&t=519s&ab_channel=NSTUFACE

Dari video-video tersebut saya diperkenalkan mengenai interface OpenModelica untuk pemula. Saya juga mempelajari bahwa OpenModelica menggunakan bahasa program Modelica untuk penggunaannya. Bahasa ini mirip dengan bahasa pemograman lain seperti python. Kelebihan yang saya lihat dari OpenModelica ini adalah program ini memiliki tools yang membantu mempermudah kita untuk membuat sistem dalam bentuk grafis atau skema. Model-model ini dapat kita aplikasikan dalam kehidupan nyata seperti membuat sistem elektrikal, magnetik, fluida, perpindahan panas, dsb.

Dalam konteks Metode Numerik, saya mempelajari bahwa OpenModelica dapat membantu kita dalam menyelesaikan permasalahan-permasalahan dalam mata kuliah Metode Numerik dan memvisualisasikan penyelesaian tersebut dalam bentuk grafik, salah satunya adalah penyelesaian Persamaan Diferensial Biasa atau ODE.

Contoh penyelesaian permasalahan ODE menggunakan OpenModelica adalah persamaan pendulum, yang didefinisikan sebagai berikut:

Persamaan-pendulum.png

Dengan menggunakan referensi dari tautan kedua, saya membuat bahasa pemograman untuk menyelesaikan persamaan pendulum tersebut.

model pendulum
 Real y "variable state";
 Real x;
 parameter Real L=1 "pendulum length";
 constant Real g=9.80665;
initial equation
 y=9 "initial value";
equation
 x=der(y);
 der(x)+(g/L)*(y)=0 "differential equation";
annotation(experiment(StartTime = 0, StopTime = 100));
end pendulum;


Penyelesaian dari persamaan tersebut digambarkan dalam bentuk grafik sebagai berikut

Hasil Plotting

Dari grafik tersebut dapat dilihat bahwa seiring berjalannya waktu, pendulum melakukan osilasi. Namun dapat dilihat bahwa pendulum tersebut tidak kembali ketitik semula seiring berjalannya waktu.

Dari pembelajaran ini, saya mempelajari bahwa OpenModelica merupakan tools yang berguna dalam pelajaran Metode Numerik.


Pertemuan 2

Pada pertemuan kedua ini, pak Dai mengevaluasi hasil belajar kami tentang yang sudah kami pelajari tentang Metode Numerik sebelum UTS, serta mempelajari penggunaan aplikasi OpenModelica. Kemudian kami diminta untuk membuat coding sederhana terkait nilai rata-rata 10 sample.

Setelah sesi belajar tatap muka berakhir, kami diberikan tugas oleh pak Dai untuk membuat model untuk menyelesaikan persamaan-persamaan aljabar simultan (seperti Gauss Elimination, Gauss-Seidel, dll.).

Untuk PR, saya menggunakan 3 persamaan aljabar sebagai berikut:

Fungsi-aljabar-simultan.png

Persamaan aljabar simultan tersebut dapat diselesaikan dengan metode konvensional seperti Naive Gauss Elimination, atau menggunakan metode lain sepertiGauss Elimination yang melibatkan matriks , atau Gauss Seidel. Pada kali ini, saya menggunakan metode Gauss Elimination untuk menyelesaikan persamaan tersebut.

Gauss Elimination adalah algoritme yang digunakan untuk menyelesaikan sistem persamaan linear. Metode ini melibatkan perubahan bentuk sistem persamaan menjadi bentuk matriks. Setelah mengubah sistem dalam bentuk matriks, lalu dilakukan pengurangan baris dengan mengganti posisi baris, dan/atau melakukan operasi penjumlahan dan pengurangan antar baris.

Modelica menyediakan model untuk menyelesaikan permasalahan aljabar simultan dengan menggunakan metode Gauss Elimination. Maka dari itu, saya mengubah sistem persamaan tersebut menjadi bentuk matriks. Berikut adalah model yang saya buat dengan OpenModelica:

Gauss-elimination.png

Saya menggunakan perintah dari library modelica yaitu "Modelica.Math.Matrices.solve(A,b)" untuk menyelesaikan sistem persamaan linier tersebut.

Setelah melakukan pengecekan dan melakukan simulasi terhadap model, saya melakukan plotting terhadap hasil simulasi tersebut. Berikut adalah hasil plotting tersebut:

Plotting-gauss-elimination.png

dapat dilihat bahwa hasil plotting tersebut menunjukkan penyelesaian dari permasalaha sistem persamaan yang telah ditunjukkan sebelumnya, yaitu x1=3, x2=2, x3=1.

Pertemuan 3

Pada pertemuan hari ini, Pak Dai menjelaskan mengenai aplikasi metode numerik pada permasalahan teknik. Salah satu permasalahan teknik yang dibahas adalah permasalahan sistem pegas-massa. Lalu pak Dai meminta kami untuk memahami permasalahan pada Figure 12.11 pada e-book Metode Numerik. Dengan mengubah sistem menjadi bentuk matrix, kita mendapatkan bentuk matrix dari sistem tersebut sebagai berikut:

persamaan matrix tersebut dapat diselesaikan dengan metode eliminasi gauss. Lalu saya membuat coding di OpenModelica sebagai berikut:

Spring-mass-model.png

setelah melakukan melakukan pengecekan dan tidak ada masalah, saya melakukan simulasi untuk menemukan nilai x1,x2, dan x3 dari persamaan matriks tersebut. Setelah melakukan simulasi, saya melakukan plotting untuk melihat hasil yang ditemukan

Hasil-plotting-spring-mass.png

dapat dilihat bahwa nilai x1 = 7.3575; x2 = 10.0552; x3 = 12.5077, sesuai dengan hasil yang ada di buku Metode Numerik.

Tugas Pertemuan 3

Setelah pertemuan ini, pak Dai memberikan PR untuk mengerjakan soal berikut:

Example2-1.png

Langkah Penyelesaian Example 2-1

1. Mengubah problem menjadi node dan elemen
Example2-1 table.png
2. Menentukan nilai Konstanta kekakuan/stiffness constant dari elemen
Elemen 1,3,4,6 Stiffness-element1346.png
Elemen 2,5 Stiffness-element25.png
4. Menyusun dan menggabungkan matriks elemen-elemen
Kglobal-summary.png
4. Menyusun dan menggabungkan matriks elemen-elemen
Kglobal-summary.png
Kglobal-summary-simplified.png
5. Menerapkan kondisi batas dan beban
Kondisi batas untuk node 1 dan 3 adalah fixed Boundary-condition-deflection-node13.png
External force pada node 4 dan 5 Externalforce-node45.png
Dengan menerapkan Hukum Hooke, F= k. x, maka dalam persamaan matrix menjadi [F]=[K].[U]. Didapat
Deflection-matrix-simplified.png
6. Tahap pencarian solusi
K2global.png
K5global.png
Persamaan matriks diatas dapat diselesaikan dengan OpenModelica, berikut adalah pemograman yang saya buat
Deflection-code.png
setelah melakukan pengecekan dan simulasi, saya melakukan plotting terhadap hasil simulasi. berikut hasilnya:
Deflection-plot.png
7. Mendapatkan nilai gaya reaksi
Karena di soal ingin mencari gaya reaksi, maka perlu dilakukan perhitungan pada gaya reaksi dengan persamaan {R} = [K] {U} - {F}
Reaction-force-matrix.png
Persamaan diatas dapat diselesaikan oleh OpenModelica, berikut adalah pemogramannya
Externalforce-code.png
berikut hasil plottingnya
Externalforce-plot.png
8. Mendapatkan gaya Internal dan Normal Stress
Untuk menghitung normal stress, perlu dilakukan transformasi dari hasil defleksi ditinjau dari koordinat global menjadi transformasi lokal, berikut adalah persamaan yang dapat digunakan Global-to-local.png
{u} -> koordinat local
[U] -> koordinat global
[T] -> matriks transformasi
Misalkan kita menganalisis stress pada elemen 5, maka node yang dianalisis adalah node 2 dan 5

Sehingga persamaan matriks defleksi pada koordinat lokal menjadi || Global-to-local-element5.png

Persamaan diatas dapat diselesaikan dengan OpenModelica, berikut adalah pemogramannya
Deflectionlocal-code.png
berikut hasil plottingnya
Deflectionlocal-plot.png

Didapatkan U2x=-0.00976 inch dan U6x=-0.01209 inch

Internal force didapat dengan persamaan Internal-force-equation.png

didapat internal force pada elemen 5 sebesar 696lb.

Normal stress didapat dengan persamaan Normal-stress-equation.png

didapat normal stress pada elemen 5 sebesar 87lb/in^2

Pertemuan 4

Kuis

Membuat Flowchart untuk penyelesaian soal nomor 4 dan 8

Soal No.4 Problem4-edo.png
Soal No.8 Problem8-edo.png

Berikut adalah penyelesaian untuk soal diatas

Soal No.4
1. Mengubah problem menjadi node dan elemen
Element-Table-Problem4.png
2. Menentukan nilai Konstanta kekakuan/stiffness constant dari elemen
Elemen 1,2 Element12-problem4.png
Elemen 3 Element3-problem4.png
Elemen 4,5 Element45-problem4.png
4. Menyusun dan menggabungkan matriks elemen-elemen
Elemen Local Matrix Global Matrix
Elemen 1,2 Localmatrix-element12.png Globalmatrix-element12.png
Elemen 3 Localmatrix-element3.png Globalmatrix-element3.png
Elemen 4,5 Localmatrix-element45.png Globalmatrix-element45.png
4. Menyusun dan menggabungkan matriks elemen-elemen
Matrixglobal-sum.png
5. Menerapkan kondisi batas dan beban
Kondisi batas untuk node 1, dan 3 adalah fixed
External force pada node 2 dan 4 Externalforce-problem4.png
Dengan menerapkan Hukum Hooke, F= k. x, maka dalam persamaan matrix menjadi [F]=[K].[U]. Didapat
Solving-equation-problem4.png
6. Tahap pencarian solusi
Solving-equation-simplified-problem4.png
Persamaan matriks diatas dapat diselesaikan dengan OpenModelica, berikut adalah pemograman yang saya buat
Gauss-elimination-problem4.png
setelah melakukan pengecekan dan simulasi, saya melakukan plotting terhadap hasil simulasi. berikut hasilnya:
Plot-problem4.png

Pertemuan 5

Pada pertemuan hari ini, kami diminta pak Dai untuk membahas tugas kuis yang sudah kami buat. Pak Dai meminta saya untuk menjelaskan tentang progress yang sudah saya buat. Namun, tugas yang saya kerjakan belum dalam bentuk coding. Kemudian saya menjelaskan mengenai ide besar coding untuk Tugas Kuis minggu lalu yang sudah dikerjakan oleh saudara Josiah Enrico. Secara garis besar, perlu dibuat fungsi panggil yang digunakan pada algoritme dalam model.

Setelah itu teman saya, Fahmi, menjelaskan mengenai coding yang ia buat untuk Tugas Kuis minggu lalu yaitu mengenai Plane Truss dan Space Truss.

Tugas Pertemuan 5

Setelah kelas, Pak Dai memberikan tugas 5 sebagai berikut:

example 3.3

Berikut adalah langkah penyelesaian dari kuis nomor 5


Pertemuan 6

Pada pertemuan hari ini, Pak Dai meminta kami untuk melakukan muhasabah terhadap hasil pembelajaran kami selama kelas Metode Numerik bersama Pak Dai. Berikut adalah muhasabah saya:

Menurut saya, saya merasa sudah cukup paham untuk memahami dasar-dasar dari metode numerik yang sudah diajari sebelum UTS. Pemahaman ini menjadi dasar saya untuk menerapkan metode numerik dengan menggunakan pemorgraman seperti OpenModelica. Selain pemahaman numerik, saya juga sudah cukup memahami tentang fenomena fisika dan membuat model matematika dari fenomena fisika tersebut. Penyelesaian masalah dibantu dengan metode numerik akan sangat membantu kita dalam menyelesaikan masalah teknik. Namun karena saya belum memahami bahasa pemograman modelica, maka saya sedikit kesulitan untuk menterjemahkan flowchart dalam penyelesaian masalaha teknik menjadi bahasa program.

Pertemuan 7

Pada pertemuan hari ini, Pak Dai menjelaskan mengenai tugas besar Metode Numerik yaitu Aplikasi Metode Numerik dalam Optimasi Desain Struktur Rangka Sederhana. Secara garis besar yang dicari adalah material yang tepat dan murah untuk rangka sederhana. Setelah itu kami melakukan praktik optimasi bersama Asisten Dosen, Bu Candra.

Praktik yang dilakukan adalah Bracket Optimization Using Golden Ratio Method. Misalkan terdapat suatu fungsi yang memiliki nilai fungsi maksimum global dan lokal serta fungsi minimum global dan lokal.

Setelah itu, kami melakukan optimasi pada permasalahan berikut:

Soal-optimisasi.png

Objektif dari permasalahan tersebut adalah untuk menemukan nilai fungsi maksimum dari fungsi tersebut. Lalu kami diajarkan cara menggunakan OpenModelica untuk menyelesaikan tersebut, berikut adalah programnya:

model bracket_optimation3
 parameter Integer n=8;
 Real x1 [n];
 Real x2 [n];
 Real xup;
 Real xlow;
 Real d;
 Real f1 [n];
 Real f2 [n];
 Real xopt;
 Real yopt;
algorithm
 xup  :=4;
 xlow :=0;
 for i in (1:n) loop
 d:=(5^(1/2)-1)/2*(xup-xlow);
 x1[i] := xlow+d;
 x2[i] := xup-d;
 f1[i] := f_obj3(x1[i]);
 f2[i] := f_obj3(x2[i]);
   if f1[i]>f2[i] then
   xup := xup;
   xlow:= x2[i];
   xopt:= xup;
   yopt:= f1[i];
     else
     xlow := xlow;
     xup  := x1[i];
     xopt := xup;
   end if;
 end for;
end bracket_optimation3;

Untuk fungsi panggilnya:

function f_obj3
 import Modelica.Math;
 input Real x;
 output Real y;
algorithm
 y:=2*Math.sin(x)-x^2/10;
end f_obj3;

Untuk menarik kesimpulan, dalam menyelesaikan permasalahan dengan menggunakan metode numerik, kita perlu memahami proses-proses untuk menyelesaikan permasalahan tersebut. Pemahaman proses-proses ini akan memudahkan kita dalam membuat program OpenModelica.

Tugas Besar

Problem

Tugas Besar Metnum Geometri Jos.jpg

Tujuan

Mencari material yang paling optimum pada area yang paling optimum yang dijual di pasar

Penyelesaian

1. Mendefinisikan Problem

Untuk dapat menyelesaikan permasalahan soal, perlu didefinisikan node dan elemen pada soal

Rangka siku definition.png

2. Membuat asumsi dan constraint pada problem

Asumsi:
- Diasumsikan tidak ada bending karena bersifat truss
- Beban terdistribusi pada node
- Safety Factor = 2
- Batas displacement 0,001m sebelum terjadi buckling
- Variabel bebas
Constraint"
- Node 1,2,3,4 (lantai dasar) fixed
- Beban F1 dan F2 terdistribusi ke node sekitaranya, sehingga:
1. Node 13 & 16 = 1000N
2. Node 14 & 15 = 500N

3. Mengasumsikan solusi pada problem

Untuk mencapai tujuan hal dapat dilakukan:

1. Mencari area paling optimum dengan membandingkan dimensi siku untuk menentukan dimensi siku paling optimum (Elastisitas menjadi variabel tetap, Area menjadi variabel bebas)

2. Mencari material paling optimum dengan membandingkan performance material pada area yang sama (Area menjadi variabel tetap, Elastisitas menjadi variabel bebas)

4. Mencari Data

Pencarian-Data-Tubes.png


5. Membuat model numerik

Program Numerik ini dibuat untuk mencari nilai stress, safety factor, serta membantu dalam melakukan curve fitting

Program untuk menghitung stress

model TugasBesarEdwardJoshua
//define initial variable
parameter Integer Points=size(P,1); //Number of Points
parameter Integer Trusses=size(C,1); //Number of Trusses
parameter Real Yield= (nilai yield) ; //Yield Strength Material(Pa)
parameter Real Area= (nilai area) ;   //Luas Siku (Dimension=30x30x3mm)
parameter Real Elas= (nilai elastisitas) ;     //Elasticity Material (Pa)
//define connection
parameter Integer C[:,2]=[ 1,5;  // (1)
                          2,6;  // (2)
                          3,7;  // (3)
                          4,8;  // (4)
                          5,6;  // (5)
                          6,7;  // (6)
                          7,8;  // (7)
                          5,8;  // (8)
                          5,9;  // (9)
                          6,10; // (10)
                          7,11; // (11)
                          8,12; // (12)
                          9,10; // (13)
                          10,11;// (14)
                          11,12;// (15)
                          9,12; // (16)
                          9,13; // (17)
                          10,14;// (18)
                          11,15;// (19)
                          12,16;// (20)
                          13,14;// (21)
                          14,15;// (22)
                          15,16;// (23)
                          13,16];//(24)
//define coordinates (please put orderly)
parameter Real P[:,6]=[     0   ,0  ,0,1,1,1;     //node 1
                           0.75,0  ,0,1,1,1;    //node 2
                           0.75,0.6,0,1,1,1;     //node 3
                           0   ,0.6,0,1,1,1;      //node 4
                           
                           0   ,0  ,0.3,0,0,0;   //node 5
                           0.75,0  ,0.3,0,0,0;  //node 6
                           0.75,0.6,0.3,0,0,0;   //node 7
                           0   ,0.6,0.3,0,0,0;    //node 8
                           
                           0   ,0  ,1.05,0,0,0;   //node 9
                           0.75,0  ,1.05,0,0,0;  //node 10  
                           0.75,0.6,1.05,0,0,0;   //node 11
                           0   ,0.6,1.05,0,0,0;    //node 12
                           
                           0   ,0  ,1.8,0,0,0;   //node 13
                           0.75,0  ,1.8,0,0,0;  //node 14
                           0.75,0.6,1.8,0,0,0;   //node 15
                           0   ,0.6,1.8,0,0,0];   //node 16
                           
//define external force (please put orderly)
parameter Real F[Points*3]={0,0,0,
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,-1000, 
                           0,0,-500, 
                           0,0,-500, 
                           0,0,-1000}; 
//solution
Real displacement[N], reaction[N];
Real check[3];
Real stress1[Trusses];
Real safety[Trusses];
Real dis[3];
Real Str[3];
protected
 parameter Integer N=3*Points;
 Real q1[3], q2[3], g[N,N], G[N,N], G_star[N,N], id[N,N]=identity(N), cx, cy, cz, L, X[3,3];
 Real err=10e-15, ers=10e-8;
algorithm
//Creating Global Matrix
G:=id;
for i in 1:Trusses loop
 for j in 1:3 loop
  q1[j]:=P[C[i,1],j];
  q2[j]:=P[C[i,2],j];
 end for;       
   //Solving Matrix
   L:=Modelica.Math.Vectors.length(q2-q1);
   cx:=(q2[1]-q1[1])/L;
   cy:=(q2[2]-q1[2])/L;
   cz:=(q2[3]-q1[3])/L; 
   X:=(Area*Elas/L)*[cx^2,cx*cy,cx*cz;
                     cy*cx,cy^2,cy*cz;
                     cz*cx,cz*cy,cz^2];
    //Transforming to global matrix
   g:=zeros(N,N); 
   for m,n in 1:3 loop
     g[3*(C[i,1]-1)+m,3*(C[i,1]-1)+n]:=X[m,n];
     g[3*(C[i,2]-1)+m,3*(C[i,2]-1)+n]:=X[m,n];
     g[3*(C[i,2]-1)+m,3*(C[i,1]-1)+n]:=-X[m,n];
     g[3*(C[i,1]-1)+m,3*(C[i,2]-1)+n]:=-X[m,n];
   end for;   
 G_star:=G+g;
 G:=G_star;
end for;
//Implementing boundary
for x in 1:Points loop
 if P[x,4] <> 0 then
   for a in 1:Points*3 loop
     G[(x*3)-2,a]:=0;
     G[(x*3)-2,(x*3)-2]:=1;
   end for;
 end if;
 if P[x,5] <> 0 then
   for a in 1:Points*3 loop
     G[(x*3)-1,a]:=0;
     G[(x*3)-1,(x*3)-1]:=1;
   end for;
 end if;
 if P[x,6] <> 0 then
   for a in 1:Points*3 loop
     G[x*3,a]:=0;
     G[x*3,x*3]:=1;
   end for;
 end if;
end for;
//Solving displacement
displacement:=Modelica.Math.Matrices.solve(G,F);
//Solving reaction
reaction:=(G_star*displacement)-F;
//Eliminating float error
for i in 1:N loop
 reaction[i]:=if abs(reaction[i])<=err then 0 else reaction[i];
 displacement[i]:=if abs(displacement[i])<=err then 0 else displacement[i];
end for;
//Checking Force
check[1]:=sum({reaction[i] for i in (1:3:(N-2))})+sum({F[i] for i in (1:3:(N-2))});
check[2]:=sum({reaction[i] for i in (2:3:(N-1))})+sum({F[i] for i in (2:3:(N-1))});
check[3]:=sum({reaction[i] for i in (3:3:N)})+sum({F[i] for i in (3:3:N)});  
for i in 1:3 loop
 check[i] := if abs(check[i])<=ers then 0 else check[i];
end for;
//Calculating stress in each truss
for i in 1:Trusses loop
for j in 1:3 loop
  q1[j]:=P[C[i,1],j];
  q2[j]:=P[C[i,2],j];
  dis[j]:=abs(displacement[3*(C[i,1]-1)+j]-displacement[3*(C[i,2]-1)+j]);
end for;       
   //Solving Matrix
   L:=Modelica.Math.Vectors.length(q2-q1);
   cx:=(q2[1]-q1[1])/L;
   cy:=(q2[2]-q1[2])/L;
   cz:=(q2[3]-q1[3])/L; 
   X:=(Elas/L)*[cx^2,cx*cy,cx*cz;
                cy*cx,cy^2,cy*cz;
                cz*cx,cz*cy,cz^2];    
   Str:=(X*dis);
   stress1[i]:=Modelica.Math.Vectors.length(Str);
end for;
//Safety factor
for i in 1:Trusses loop
 if stress1[i]>0 then
   safety[i]:=Yield/stress1[i];
 else
   safety[i]:=0;
 end if; 
end for;
end TugasBesarEdwardJoshua;

Program untuk curve fitting

Model

model callcurve
 parameter Real [8] X={1.11e-4,1.41e-4,1.71e-4,2.31e-4,3.04e-4,3.75e-4,7.44e-4,8.64e-4};
 parameter Real [8] Y={273700 ,318800 ,381200 ,512800 ,683700 ,838000 ,1663100,1986400};
 Real [3] Coe;
algorithm
 Coe:=Curve_Fitting(X,Y);
end callcurve;

Function

function Curve_Fitting
  input Real X[:];
  input Real Y[size(X,1)];
  input Integer order=2;
  output Real Coe[order+1];
protected
  Real Z[size(X,1),order+1];
  Real ZTr[order+1,size(X,1)];
  Real A[order+1,order+1];
  Real B[order+1];
algorithm
 for i in 1:size(X,1) loop
  for j in 1:(order+1) loop
  Z[i,j]:=X[i]^(order+1-j);
  end for;
 end for;
ZTr:=transpose(Z);
A:=ZTr*Z;
B:=ZTr*Y;
Coe:=Modelica.Math.Matrices.solve(A,B); //Coe:=fill(2,size(Coe,1));

end Curve_Fitting;

Program untuk optimasi

Program untuk optimasi menggunakan metode golden ratio method

model Opt_Gold
 parameter Real[3] y={-834.974,0.356007,2.39937e-5};
 parameter Real xlo=111e-6;
 parameter Real xhi=3.75e-4; 
 parameter Integer N=10; // maximum iteration
 parameter Real es=0.0001; // maximum error
 Real f1[N], f2[N], x1[N], x2[N], ea[N];
 Real xopt,  fx;
protected
 Real d, xl, xu, xint, R=(5^(1/2)-1)/2;
algorithm
 xl := xlo; 
 xu := xhi; 
for i in 1:N loop
 d:= R*(xu-xl);
 x1[i]:=xl+d;
 x2[i]:=xu-d;
 f1[i]:=y[1]*x1[i]^2+y[2]*x1[i]+y[3];
 f2[i]:=y[1]*x2[i]^2+y[2]*x2[i]+y[3];
 xint:=xu-xl; 
 if f1[i]>f2[i] then
   xl:=x2[i];
   xopt:=x1[i];
   fx:=f1[i];
   else
     xu:=x1[i];
     xopt:=x2[i];
     fx:=f2[i];
 end if; 
ea[i]:=(1-R)*abs((xint)/xopt);
if ea[i]<es then
  break;
end if;

end for; end Opt_Gold;

7. Komputasi & Optimasi

Elasticity Tetap

Untuk menentukan dimensi optimum siku dengan material SS201, dilakukan perhitungan:

Hasil perhitungan SS201.png

Kemudian dilakukan curve fitting pada harga per 6m siku SS201 untuk melengkapi harga yang belum lengkap

Koefisien kurva harga ss201.png sehingga didapatkan kurva Y(X)=(3.74242*1012)X2 - (7.30909*107)X + 139839 untuk harga per 6m siku

kemudian dicari nilai safety factor, lalu S.F/Cost, lalu dilakukan curve fitting serta optimasi

Curve-fitting dan optimasi.png SS201 Graph.png

Dapat disimpulkan bahwa area optimum siku untuk rangka sederhana pada soal dengan menggunakan material SS 201 adalah 40x40x3mm

Area Tetap

Untuk menentukan material optimum siku dengan dimensi siku 30x30x3mm, dilakukan perhitungan:

Hasil perhitungan area locked.png

Kemudian dilakukan curve fitting terhadap data SF/Cost dan dilakukan optimasi:

Curve-fitting dan optimasi area locked.png Area-Locked Graph.png

Dapat disimpulkan bahwa area optimum siku untuk rangka sederhana pada soal dengan menggunakan dimensi 30x30x3mm adalah SS 304


UAS Metode Numerik 2021

Berikut adalah jawaban dari UAS Metode Numerik 03

Jawaban UAS Metode Numerik No.1
Jawaban UAS Metode Numerik No.2
Jawaban UAS Metode Numerik No.3
Jawaban UAS Metode Numerik No.4,5,6

Untuk jawaban No. 7 akan saya tuliskan program yang saya gunakan untuk menyelesaikan soal tersebut:

Program Utama
model SoalNo7
  //inisiasi = [ elemen#, theta, A, E, L]
  parameter Real [:,5] inisiasi = [1,      0, 2.011e-4, 1.9e11, 1; //isi sesuai data
                                   2,      0, 2.011e-4, 1.9e11, 1;
                                   3,     45, 2.011e-4, 1.9e11, 1;
                                   4,    135, 2.011e-4, 1.9e11, 1];
  //node = [ i, j]                        
  parameter Integer [3,2] node = [1, 2; //isi sesuai data
                                  2, 3;
                                  1, 4,
                                  2, 4,
                                  3, 4];
  //jumlah node
   parameter Integer n = 4; //isi sesuai data                             
  //titik node boundary
   parameter Integer [:] Boundary = {3,4}; //isi sesuai data
                     //load = [ F1x,   F1y, F2x,F2y,F3x,F3y,F4x,F4y]                                 
   parameter Real [2*n] load = { 0, 1135562,   0,  0,  0,  0,  0,  0}; //isi sesuai data                        
   Real [size(inisiasi,1)] k;
   Real [size(inisiasi,1),4,4] Ke;
   Real [size(inisiasi,1),2*n,2*n] Kg;
   Real [2*n,2*n] KgTot;
   Real [2*n,2*n] KgB;
   Real [2*n] U;
   Real [2*n] R;
  //check force
   Real [2] F; 
equation
 k = {(inisiasi[i,3] * inisiasi[i,4] / inisiasi[i,5]) for i in 1:size(inisiasi,1)}; 
 Ke = StiffnessMatrixElement(inisiasi);  
 Kg = StiffnessMatrixGlobal(n, node, Ke);  
 KgTot = SumStiffnessMatrixGlobal(Kg); 
 KgB = BoundaryStiffnessMatrixGlobal(KgTot, Boundary); 
 U = GaussJordan(KgB, load); 
 R = ReactionForce(KgTot, U, load); 
end SoalNo7;
Fungsi Panggil
Stiffness Matrix Elemen

Untuk membuat matriks kekakuan setiap elemen (matriks lokal)

function StiffnessMatrixElement
 input Real [:,5] inisiasi_mat;
 output Real [size(inisiasi_mat,1),4,4] Ke_mat;
 protected
   Real theta;
   Real [3] StiffTrig;
   Real [4,4] StiffTrans;
   Real [size(inisiasi_mat,1)] k_vec;
   Real float_error = 10e-10;
algorithm
 k_vec := {(inisiasi_mat[i,3] * inisiasi_mat[i,4] / inisiasi_mat[i,5]) for i in 1:size(inisiasi_mat,1)};
 // Finding stiffness matrix of each element member
 for i in 1:size(inisiasi_mat,1) loop
 // Clearing the matrices
 StiffTrig := zeros(3);
 StiffTrans := zeros(4,4);  
 // Converting degrees to radians
 theta := Modelica.SIunits.Conversions.from_deg(inisiasi_mat[i,2]);
 // {cos^2, sin^2, sincos}
 StiffTrig := {(Modelica.Math.cos(theta))^2,
               (Modelica.Math.sin(theta))^2,
               (Modelica.Math.sin(theta)*Modelica.Math.cos(theta))};  
 // Handle float error elements in StiffTrig
 for t in 1:size(StiffTrig,1) loop
   if abs(StiffTrig[t]) <= float_error then
     StiffTrig[t] := 0;
   end if;
 end for;  
 // Construct stiffness transformation matrix
 StiffTrans := [  StiffTrig[1],    StiffTrig[3], -1*StiffTrig[1], -1*StiffTrig[3];
                  StiffTrig[3],    StiffTrig[2], -1*StiffTrig[3], -1*StiffTrig[2];
               -1*StiffTrig[1], -1*StiffTrig[3],    StiffTrig[1],    StiffTrig[3];
               -1*StiffTrig[3], -1*StiffTrig[2],    StiffTrig[3],    StiffTrig[2]];  
 // Multiply in stiffness constant of element, add final stiffness matrix to Ke_mat
 for m in 1:4 loop
   for n in 1:4 loop
     Ke_mat[i,m,n] := k_vec[i] * StiffTrans[m,n];
   end for;
 end for;
 end for;
end StiffnessMatrixElement;
Stiffness Matrix Global

Untuk memindahkan matriks lokal menjadi matriks global

function StiffnessMatrixGlobal
 input Integer x;
 input Integer [:,2] n;
 input Real [:,4,4] Ke_mat; 
 output Real [size(Ke_mat,1),2*x,2*x] Kg_mat;  
algorithm
 Kg_mat := zeros(size(Ke_mat,1),2*x,2*x);
 for i in 1:size(Ke_mat,1) loop
   Kg_mat[i,2*n[i,1],2*n[i,1]]:=Ke_mat[i,2,2];
   Kg_mat[i,2*n[i,1]-1,2*n[i,1]-1]:=Ke_mat[i,1,1];
   Kg_mat[i,2*n[i,1],2*n[i,1]-1]:=Ke_mat[i,2,1];
   Kg_mat[i,2*n[i,1]-1,2*n[i,1]]:=Ke_mat[i,1,2];
   Kg_mat[i,2*n[i,2],2*n[i,2]]:=Ke_mat[i,4,4];
   Kg_mat[i,2*n[i,2]-1,2*n[i,2]-1]:=Ke_mat[i,3,3];
   Kg_mat[i,2*n[i,2],2*n[i,2]-1]:=Ke_mat[i,4,3];
   Kg_mat[i,2*n[i,2]-1,2*n[i,2]]:=Ke_mat[i,3,4];
   Kg_mat[i,2*n[i,2],2*n[i,1]]:=Ke_mat[i,4,2];
   Kg_mat[i,2*n[i,2]-1,2*n[i,1]-1]:=Ke_mat[i,3,1];
   Kg_mat[i,2*n[i,2],2*n[i,1]-1]:=Ke_mat[i,4,1];
   Kg_mat[i,2*n[i,2]-1,2*n[i,1]]:=Ke_mat[i,3,2];
   Kg_mat[i,2*n[i,1],2*n[i,2]]:=Ke_mat[i,2,4];
   Kg_mat[i,2*n[i,1]-1,2*n[i,2]-1]:=Ke_mat[i,1,3];
   Kg_mat[i,2*n[i,1],2*n[i,2]-1]:=Ke_mat[i,2,3];
   Kg_mat[i,2*n[i,1]-1,2*n[i,2]]:=Ke_mat[i,1,4];
 end for;  

end StiffnessMatrixGlobal;

Sum Matrix Global

Untuk menjumlahkan semua matrix global yang sudah diubah

function SumStiffnessMatrixGlobal
 input Real [:,:,:] Kg_mat;
 output Real [size(Kg_mat,2),size(Kg_mat,2)] KgTot_mat;  
algorithm
  for a in 1:size(Kg_mat,2) loop
   for b in 1:size(Kg_mat,2) loop
     KgTot_mat[a,b] := sum(Kg_mat [:,a,b]);
    end for;
   end for;
end SumStiffnessMatrixGlobal;
Boundary Stiffness Matrix Global

Untuk menerapkan kondisi batas pada matriks global untuk mencari defleksi

function BoundaryStiffnessMatrixGlobal
 input Real [:,:] KgTot_met;
 input Integer[:] Boundary_met;
 output Real [size(KgTot_met,1),size(KgTot_met,1)] KgB_met;  
algorithm
 for a in 1:size(KgTot_met,1) loop
   for b in 1:size(KgTot_met,1) loop
     KgB_met[a,b] := KgTot_met[a,b];
   end for;
 end for;  
 for i in 1:size(KgTot_met,1) loop
  for a in 1:size(Boundary_met,1) loop
   for b in 0:1 loop
     KgB_met[2*(Boundary_met[a])-b,i]:=0;
     KgB_met[2*Boundary_met[a]-b,2*Boundary_met[a]-b]:=1;
   end for;
  end for;
 end for; 
end BoundaryStiffnessMatrixGlobal;
Function Gauss Jordan

Untuk melakukan operasi Gauss Jordan

function GaussJordan
 input Real [:,:] KgB_met;
 input Real [size(KgB_met,1)] load_met;
 output Real [size(KgB_met,1)] U_met;  
 protected 
 Real float_error = 10e-10;
algorithm
 U_met:=Modelica.Math.Matrices.solve(KgB_met,load_met);
 for i in 1:size(KgB_met,1) loop
   if abs(U_met[i]) <= float_error then
    U_met[i] := 0;
   end if;
 end for;
end GaussJordan;
Reaction Force
function ReactionForce
 input Real [:,:] KgTot_met;
 input Real [size(KgTot_met,1)] U_met;
 input Real [size(KgTot_met,1)] load_met;
 output Real [size(KgTot_met,1)] R_met;
 protected Real float_error = 10e-10;
algorithm
 R_met := KgTot_met*U_met-load_met;  
 for t in 1:size(KgTot_met,1) loop
   if abs(R_met[t]) <= float_error then
     R_met[t] := 0;
   end if;
 end for; 
end ReactionForce;