Difference between revisions of "Raihan Tsaqif A"

From ccitonlinewiki
Jump to: navigation, search
(TUGAS BESAR METODE NUMERIK)
(TUGAS BESAR METODE NUMERIK)
Line 230: Line 230:
  
 
end CurveFitting;
 
end CurveFitting;
 +
 +
 +
 +
*Optimasi
 +
model OptimasiRangka
 +
 +
parameter Real xd[:]={111e-6,141e-6,171e-6,231e-6,304e-6};
 +
parameter Real yd[size(xd,1)]={7.25e-5,7.83e-5,8.15e-5,8.31e-5,9.08e-5};
 +
parameter Real xlo=111e-6;
 +
parameter Real xhi=425e-6;
 +
parameter Integer N=10; // maximum iteration
 +
parameter Real es=0.0001; // maximum error
 +
 +
Real f1[N], f2[N], x1[N], x2[N], ea[N], y[3];
 +
Real xopt,  fx;
 +
protected
 +
Real d, xl, xu, xint, R=(5^(1/2)-1)/2;
 +
 +
algorithm
 +
xl := xlo;
 +
xu := xhi;
 +
y  := Curve_Fitting(xd,yd);
 +
 +
for i in 1:N loop
 +
d:= R*(xu-xl);
 +
x1[i]:=xl+d;
 +
x2[i]:=xu-d;
 +
f1[i]:=y[1]*x1[i]^2+y[2]*x1[i]+y[3];
 +
f2[i]:=y[1]*x2[i]^2+y[2]*x2[i]+y[3];
 +
xint:=xu-xl;
 +
 +
if f1[i]>f2[i] then
 +
  xl:=x2[i];
 +
  xopt:=x1[i];
 +
  fx:=f1[i];
 +
  else
 +
    xu:=x1[i];
 +
    xopt:=x2[i];
 +
    fx:=f2[i];
 +
end if;
 +
 +
ea[i]:=(1-R)*abs((xint)/xopt);
 +
if ea[i]<es then
 +
  break;
 +
end if;
 +
end for;
 +
end OptimasiRangka

Revision as of 15:59, 6 January 2021

Biodata

Nama : Raihan Tsaqif A

NPM : 1906379176

TTL : Semarang, 8 Oktober 2001

Hobi : Belajar

Saya adalah mahasiswa teknik mesin angkatan 2019, saya tertarik mengambil jurusan teknik mesin karena saya melihat bahwa di seluruh dunia ini semua bekerja dengan mesin. Mesin tidak hanya sesuatu yang melakukan pembakaran akan tetapi sebuah mekanisme pada suatu benda juga bisa disebut mesin sehingga dapat disimpulkan bahwa jurusan ini memiliki cakupan ilmu teknik yang sangat luas. Tujuan saya dalam mengikuti mata kuliah ini adalah untuk menjadi insan yang berguna untuk lingkungan sekitar dan dapat mendobrak perkembangan teknologi di Indonesia.

Tugas Metode Numerik

Pada tugas kali ini saya menggunakan aplikasi modelica dalam menentukan perubahan momentum tiap satuan waktu atau sebutan lainnya adalah gaya. Oleh karena itu saya lampirkan video sebagai berikut, sehingga harapannya dapat memberikan penjelasan juga kepada yang lainnya.



QUIZ METNUM

Flowchart

Pada quiz kali ini saya akan melampirkan langkah pengerjaan melalui flowchart


Flowchart tsaqif.jpg


TUGAS BESAR METODE NUMERIK

Dalam tugas besar ini kami diminta untuk mendesain rangka sesuai yang tertera dibawah dengan menggunakan rangka yang optimal dan cost yang minimum

Soaltubes2.jpg

Solaaa.jpg

Adapun Hal yang Harus Diperhitungkan sebagai Plotting

a. Harga material di dapat dari nilai optimum defleksi dan cross section

b. Material (Elastisitas properti)

c. Area Cross Section Truss (L profile/truss siku), luas cross section sebagai X

d. Defleksi sebagai Y


class contohkuis

//define initial variable parameter Integer Points=16; //Number of Points parameter Integer Trusses=24; //Number of Trusses parameter Real Area=0.000141; //Area (0.025m 'l' x 0.003m 'thickness') parameter Real Elas=68.9e9; //Elasticity Aluminium 6063

//define connection parameter Integer C[Trusses,2]=[1,5;

                               2,6;
                               3,7;
                               4,8;
                               5,6;  //1st floor
                               6,7;  //1st floor
                               7,8;  //1st floor
                               5,8;  //1st floor
                               5,9;
                               6,10;
                               7,11;
                               8,12;
                               9,10; //2nd floor
                               10,11;//2nd floor 
                               11,12;//2nd floor
                               9,12; //2nd floor
                               9,13;
                               10,14;
                               11,15;
                               12,16;
                               13,14;//3rd floor
                               14,15;//3rd floor
                               15,16;//3rd floor
                               13,16];//3rd floor
                                                             

//define coordinates (please put orderly) parameter Real P[Points,3]=[0.3,-0.375,0; //1

                           -0.3,-0.375,0;    //2
                           -0.3,0.375,0;     //3
                           0.3,0.375,0;      //4
                           0.3,-0.375,0.6;   //5
                           -0.3,-0.375,0.6;  //6
                           -0.3,0.375,0.6;   //7
                           0.3,0.375,0.6;    //8
                           0.3,-0.375,1.2;   //9
                           -0.3,-0.375,1.2;  //10  
                           -0.3,0.375,1.2;   //11
                           0.3,0.375,1.2;    //12
                           0.3,-0.375,1.8;   //13
                           -0.3,-0.375,1.8;  //14
                           -0.3,0.375,1.8;   //15
                           0.3,0.375,1.8];   //16
                           

//define external force (please put orderly) parameter Real F[Points*3]={0,0,0,

                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,0, 
                           0,0,-500, 
                           0,0,-1000, 
                           0,0,-1000, 
                           0,0,-500}; 

//define boundary parameter Integer b[:]={1,2,3,4};

//solution Real displacement[N], reaction[N]; Real check[3];

parameter Integer N=3*Points; Integer boundary[3*size(b,1)]=cat(1,(3*b).-2,(3*b).-1,3*b); Real q1[3], q2[3], g[N,N], G[N,N], G_star[N,N], id[N,N]=identity(N), cx, cy, cz, L, X[3,3]; Real err=10e-10; Real ers=10e-4;

algorithm //Creating Global Matrix G:=id; for i in 1:Trusses loop

for j in 1:3 loop
  q1[j]:=P[C[i,1],j];
  q2[j]:=P[C[i,2],j];
end for;
      
   //Solving Matrix
   L:=Modelica.Math.Vectors.length(q2-q1);
   cx:=(q2[1]-q1[1])/L;
   cy:=(q2[2]-q1[2])/L;
   cz:=(q2[3]-q1[3])/L; 
   X:=(Area*Elas/L)*[cx^2,cx*cy,cx*cz;
                     cy*cx,cy^2,cy*cz;
                     cz*cx,cz*cy,cz^2];

   //Transforming to global matrix
   g:=zeros(N,N); 
   for m,n in 1:3 loop
     g[3*(C[i,1]-1)+m,3*(C[i,1]-1)+n]:=X[m,n];
     g[3*(C[i,2]-1)+m,3*(C[i,2]-1)+n]:=X[m,n];
     g[3*(C[i,2]-1)+m,3*(C[i,1]-1)+n]:=-X[m,n];
     g[3*(C[i,1]-1)+m,3*(C[i,2]-1)+n]:=-X[m,n];
   end for;  

G_star:=G+g;
G:=G_star;

end for;

//Implementing boundary for i in boundary loop

for j in 1:N loop
  G[i,j]:=id[i,j];
end for;

end for;

//Solving displacement displacement:=Modelica.Math.Matrices.solve(G,F);

//Solving reaction reaction:=(G_star*displacement)-F;

//Eliminating float error for i in 1:N loop

reaction[i]:=if abs(reaction[i])<=err then 0 else reaction[i];
displacement[i]:=if abs(displacement[i])<=err then 0 else displacement[i];

end for;

//Checking Force check[1]:=sum({reaction[i] for i in (1:3:(N-2))})+sum({F[i] for i in (1:3:(N-2))}); check[2]:=sum({reaction[i] for i in (2:3:(N-1))})+sum({F[i] for i in (2:3:(N-1))}); check[3]:=sum({reaction[i] for i in (3:3:N)})+sum({F[i] for i in (3:3:N)});

for i in 1:3 loop

 check[i] := if abs(check[i])<=ers then 0 else check[i];

end for; end contohkuis;


Selanjutnya saya menampilkan pengolahan data yang saya lakukan di excel setelah melakukan riset material yang tersedia pada market


Tabelam.jpg


Tobel.jpg


  • Curve Fitting

function CurveFitting

input Real X[:]; input Real Y[size(X,1)]; input Integer order=2; output Real Coe[order+1];

protected Real Z[size(X,1),order+1]; Real ZTr[order+1,size(X,1)]; Real A[order+1,order+1]; Real B[order+1];

algorithm

for i in 1:size(X,1) loop

for j in 1:(order+1) loop
Z[i,j]:=X[i]^(order+1-j);
end for;

end for; ZTr:=transpose(Z);

A:=ZTr*Z; B:=ZTr*Y; Coe:=Modelica.Math.Matrices.solve(A,B);

end CurveFitting;


  • Optimasi

model OptimasiRangka

parameter Real xd[:]={111e-6,141e-6,171e-6,231e-6,304e-6}; parameter Real yd[size(xd,1)]={7.25e-5,7.83e-5,8.15e-5,8.31e-5,9.08e-5}; parameter Real xlo=111e-6; parameter Real xhi=425e-6; parameter Integer N=10; // maximum iteration parameter Real es=0.0001; // maximum error

Real f1[N], f2[N], x1[N], x2[N], ea[N], y[3]; Real xopt, fx; protected Real d, xl, xu, xint, R=(5^(1/2)-1)/2;

algorithm xl := xlo; xu := xhi; y  := Curve_Fitting(xd,yd);

for i in 1:N loop

d:= R*(xu-xl);
x1[i]:=xl+d;
x2[i]:=xu-d;
f1[i]:=y[1]*x1[i]^2+y[2]*x1[i]+y[3];
f2[i]:=y[1]*x2[i]^2+y[2]*x2[i]+y[3];
xint:=xu-xl;

if f1[i]>f2[i] then
  xl:=x2[i];
  xopt:=x1[i];
  fx:=f1[i];
  else
    xu:=x1[i];
    xopt:=x2[i];
    fx:=f2[i];
end if;

ea[i]:=(1-R)*abs((xint)/xopt);
if ea[i]<es then
  break;
end if;

end for; end OptimasiRangka