Difference between revisions of "Valve - Wildan Firdaus"

From ccitonlinewiki
Jump to: navigation, search
Line 481: Line 481:
  
 
1.  Gas Turbine
 
1.  Gas Turbine
 +
 
•  Air compressor
 
•  Air compressor
Berguna untuk menghisap udara dari luar untuk menaikan tekanan udara yang di alirkan menuju combustion chamber.Pada compressor terjadi proses isentropik
+
Berguna untuk menghisap udara dari luar untuk menaikan tekanan udara yang di alirkan menuju combustion chamber.Pada compressor terjadi proses isentropik.
  
 
•  Combustion Chamber
 
•  Combustion Chamber
Line 490: Line 491:
 
Berfungsi untuk memutar generator untuk menghasilkan suatu energi.
 
Berfungsi untuk memutar generator untuk menghasilkan suatu energi.
 
Gas Turbine yang berputar akibat dari panas yang di hasilkan pada combustiom chamber yang di aliri oleh nozzle menuju turbin .
 
Gas Turbine yang berputar akibat dari panas yang di hasilkan pada combustiom chamber yang di aliri oleh nozzle menuju turbin .
Diatas merupakan sistem dari gas turbin.Panas yang ada di gas turbin di alirkan menuju Heat recovery Steam generator.Berikut penjelasannya
+
Diatas merupakan sistem dari gas turbin.Panas yang ada di gas turbin di alirkan menuju Heat recovery Steam generator.
  
  
 
2. Steam Turbine
 
2. Steam Turbine
 
Heat Recovery Steam Generator menangkap gas buangan dari gas turbine
 
Heat Recovery Steam Generator menangkap gas buangan dari gas turbine
 +
 
•  HRSG menangkap gas buangan dari Gas Turbine yang jika tidak dipasang, dapat keluar melalui saluran pembuangan.HRSG berguna untuk memanaskan Kembali uap pembuangan dari gas turbine untuk dialiri ke turbin,yang dimana turbin 2 bertugas memutar generator untuk menghasilkan suatu energi
 
•  HRSG menangkap gas buangan dari Gas Turbine yang jika tidak dipasang, dapat keluar melalui saluran pembuangan.HRSG berguna untuk memanaskan Kembali uap pembuangan dari gas turbine untuk dialiri ke turbin,yang dimana turbin 2 bertugas memutar generator untuk menghasilkan suatu energi
 +
 
•  Aliran steam ini kemudian melewati Steam Turbine, sehingga membuat Steam Turbine berputar dan menggerakkan generator drive shaft. Generator drive shaft ini kemudian mengubah sisa energi buangan dari Gas Turbine menjadi listrik.
 
•  Aliran steam ini kemudian melewati Steam Turbine, sehingga membuat Steam Turbine berputar dan menggerakkan generator drive shaft. Generator drive shaft ini kemudian mengubah sisa energi buangan dari Gas Turbine menjadi listrik.
 +
 
•  Hasil buangan dari turbin dialirkan menuju kondesor untuk merubah sifat dari uap menjadi cair agar dapat didorong oleh pompa menuju HRSG untuk dipanaskan Kembali.
 
•  Hasil buangan dari turbin dialirkan menuju kondesor untuk merubah sifat dari uap menjadi cair agar dapat didorong oleh pompa menuju HRSG untuk dipanaskan Kembali.
  
  
 
'''2. Lakukan identifikasi komponen-komponen utama pada sistem serta berilah deskripsi fungsi kerjanya dalam sistem dan penjelasan analisis parameter yang digunakan.'''
 
'''2. Lakukan identifikasi komponen-komponen utama pada sistem serta berilah deskripsi fungsi kerjanya dalam sistem dan penjelasan analisis parameter yang digunakan.'''
 +
 +
Karena sistem diatas merupakan sistem Combined Cycle Power Plant, maka terdapat 2 bagian utama dalam sistem pembangkit ini, yaitu Steam turbine  dan Gas Turbine.
  
 
'''3. Medium fluida kerja apa saja yang terjadi dalam proses siklus tersebut, dan bagaimanakah proses analisis perhitungan dalam pemodelan'''
 
'''3. Medium fluida kerja apa saja yang terjadi dalam proses siklus tersebut, dan bagaimanakah proses analisis perhitungan dalam pemodelan'''
  
 
'''4. Jelaskan flow line (jalur koneksi) masing-masing yang diberi warna hitam, merah, dan biru sesuai dengan interkoneksi yang diberikan dalam diagram tersebut.'''
 
'''4. Jelaskan flow line (jalur koneksi) masing-masing yang diberi warna hitam, merah, dan biru sesuai dengan interkoneksi yang diberikan dalam diagram tersebut.'''

Revision as of 22:45, 9 December 2020

Assalamualaikum Warrahmatullahi Wabarakaatuh. Selamat sore, berikut adalah page valve saya untuk mata kuliah sistem fluida.

BIODATA DIRI

Nama : Wildan Firdaus

NPM  : 1906435574

Fakultas/ Jurusan : Teknik/ Teknik Mesin

Kelas Sistem Fluida 03


Pertemuan Sistem Fluida 1 (12 November 2020)

Pada pertemuan pertama bapak Ahmad Indra menjelaskan tentang pressure drop yang terjadi pada valve jika dialiri suatu fluida dengan menggunakan aplikasi CFDSOF.Disini Kita diberi tugas untuk mensimulasi pressuredrop yang terjadi pada T valve pada sistem perpipaan dengan fluida udara. Valve atau yang biasa disebut katup adalah sebuah perangkat yang mengatur, mengarahkan atau mengontrol aliran dari suatu fluida dengan membuka, menutup, atau menutup sebagian dari jalan alirannya.

Tipe-tipe valve:

- butterfly valve

- check valve

- gate valve

- globe valve

- ball valve

- needle valve

- diaphragm valve

- check valve

- safety valve

- pressure reducing valve

- trap valve


Persamaan Navier-Stokes ini secara matematis menunjukkan hubungan antara konservasi momentum, massa, dan energi pada fluida.


PR 1 Pressure Drop pada Globe Valve keadaan terbuka full

PR yang diberikan oleh Pak Dai setelah pertemuan pertama adalah melakukan simulasi aliran pada jenis valve yang lain. Valve yang saya gunakan untuk simulasi ini adalah globe valve dengan diameter dalam 2 inch.

Berikut adalah geometry valve yang akan saya gunakan pada simulasi ini :

G2.png

Setelah dimodelkan didalam aplikasi inventor lalu file ini export ke dalam bentuk stl. Setealah itu dimasukan ke dalam aplikasi CFDSOF lalu lalu diatur mesh geometry, fluid properties, boundary condition dan kecepatan fluida pada input valve sebesar 1m/s. Lalu dilanjutkan dengan run solver

G3.png

Setelah itu akan tampil residul monitor seperti gambar berikut

G2.1.png

Selanjutnya hasil dari aplikasi cfdsof, diinput ke aplikasi paraview. Lalu kita menentukan tekanan statik, tekanan dinamis, dan tekanan total

G4.png


G5.png

Setelah itu gunakan fitur integrated variable untuk mengetahui tekanan total pada input dan output dari globe valve. Pressure drop dari valve ini dapat kita hitung dengan cara mencari selisih tekanan total pada input dan output valve. pdrop = ptot input - ptot output. Berikut adalah hasilnya

G6.png

Dari data diatas kita dapat mengetahui nilai pressure drop nya yaitu 9.49789 - 1.32186 = 8.17603 Pa


Pertemuan Sistem Fluida 2 (19 November 2020)

Pada pertemuan kedua pak Ahmad Indra mengajak kami semua mahasiswa kelas sistem fluida dan mahasiswa kelas cfd untuk berdiskusi tentang segitiga kecepatan yang ada di sistem fluida. Sistem fluida adalah suatu system yang terdiri dari beberapa komponen yang bertujuan untuk mengalirkan fluida dari suatu tempat ke tempat lain, contohnya adalah sistem yang teridiri dari gabungan antara tangki, pipa dan pompa.

Pada system fluida kita dapat menemukan berbagai macam hal seperti contohnya adalah segitiga kecepatan. Segitiga kecepatan adalah segitiga yang memberikan informasi tentang dasar dasar kinematika dari suatu aliran pada saat menumbuk sudu suatu mesin pada sistem fluida. Segitiga ini berfungsi untuk mengetahui besar dan arah kecepatan keliling, kecepatan mutlak dan kecepatan relatif aliran terhadap sudu pada aliran fluida, sehingga pada akhirnya kita menggunakan segitiga kecepatan untuk menghitung head dan debit sehingga kita bisa mengetahui seberapa besar daya yang dihasilkan oleh suatu mesin fluida. Didalam menganalisa suatu fluida terdapat 3 cara atau metode yang bisa digunakan yaitu :

1. Experiment. Melakukan metode secara langsung. Metode ini memerlukan banyak waktu dan biaya.

2. Teori. Digunakan untuk memverifikasi data yang diambil.Contoh data experiment.

3. Numerik gabungan antara experiment dan teoritis.

Pada pertemuan kali ini kami juga diberikan tugas oleh pak DAI, yaitu membuat system dengan menggunakan openmodelica dengan memanfaatkan fasilitas fluida pada openmodelica. Tugas memahami waktu yang dibutuhkan untuk mengalirkan fluida dari tanki 1 ke tanki 2 menggunakan openmodelica. Perbedaan ketinggian 1m.


PR 2 Mempelajari Sistem Fluida di Openmodelica

PR yang diberikan oleh Pak Dai setelah pertemuan kedua adalah mempelajari openmodelica dengan melakukan simulasi pada tangki. Pada openmodelica kita dapat merancang suatu sistem, salah satunya adalah sistem fluida. Disini saya mempelajari example dari sistem fluida yaitu sistem fluida "empty tank" disini saya mempelajari beberapa bahasa pemograman yang ada di open modelica. Pertama tama kita menginput komponen tangki dan pipa pada diagram view dengan cara mendrag tank dan pipa yang ada di library


Drag Tank.png


Sehingga nanti hasilnya akan seperti ini


Tank.png


Setelah diagram diinput, kita dapat mengedit properties seperti luas area tangki, tinggi level, diameter pipa dan yang lainya yang ada pada tangki dan pipa sesuai dengan yang kita inginkan

Tank1.png
Tank2.png


Kemudian disimulasikan agar kita mendapatkan data yang diinginkan pada variable browser.


VB tank 1.png


VB Tank 2.png


Pada simulasi pertama saya menambahkan waktu untuk mengosongkan tangki yaitu 100 detik. Ternnyata masih menghasilkan grafik seperti dibawah, yang menandakan tangki belum kosong.

Grafik Tank 1.png


Setelah itu saya menambahkan batas waktunya menjadi 300 detik. Sehingga menjadi grafik seperti ini


Grafik Tank 2.png


Dari grafik yang ditunjukan, kita dapat mengetahui jika untuk mengosongkan tangki dengan dimensi luas penampang 2 meter persegi dan tinggi 2 meter melalui pipa dengan diameter 0.1 meter adalah selama 122 detik

Link GDrive : https://drive.google.com/file/d/12DmBQSoV2aEv2fA1orgjIDXCCw9dhrqL/view?usp=sharing


Pertemuan Sistem Fluida 3 (26 November 2020)

Pada pertemuan ketiga pak Ahmad Indra mengajak kami semua mahasiswa kelas sistem fluida untuk mempelajari tentang pemodelan sistem fluida. Permodelan adalah sebuah usaha untuk mempelajari sebuah system actual melalui sebuah system yang di simplifikasi. Hal ini diperlukan untuk memudahkan system yang kompleks dan belum tentu linear. Dan juga permodelan bisa dalam skala kecil dengan biaya yang murah, prinsip dari permodelan adalah sebuah usaha dalam membuat replica dari kondisi actual, yang nanti nya bentuk aktual dari sistem ini akan dibuat dengan menggunakan konsep keserupaan geometris yang sudah dibahas pada awal awal pertemuan kuliah sistem fluida. Permodelan bisa dibagi menjadi beberapa pendekatan yaitu :

- Menggunakan pendekatan hukum dasar fisika atau disebut law driven model

- Menggunakan artificial intelligent yang disebut data driven model yang berasal dari data – data yang dikumpulkan

Kemudian kami semua mencoba melakukan simulasi dengan tutorial dari pak Hariyotejo dengan model two tanks dan empty tanks.

Pemodelan Two Tanks

Two tanks sendiri melakukan pemodelan terkait air pada tangki 1 dengan ketinggian fluida 0.9 m yang mengalir melalui pipa horizontal ke tangki 2 yang pada awalnya sudah berisi air 0.1 m. Kemudian kedua tangki tersebut mencapai kondisi setimbang dimana jumlah fluida dikedua tangki tersebut sama pada t = 1.5 s. Berikut adalah pemodelannya dan grafiknya.


TwoTanksSisflu.png


TwoTanksSisflu2.png


Pemodelan Empty Tanks

Yang kedua adalah simulasi terkait empty tanks. Pada pemodelan ini tangki 1 terdapat fluida dengan 1 m3 yang kemudian mengalir melalui sebuah pipa vertikal menuju tangki 2 (tangki kosong) hingga fluida pada tangki 1 habis pada t sekitar 35 s. Berikut adalah pemodelan dan grafiknya


EmptyTanks.png


EmptyTanks2.png


PR 3 Analisa Pemodelan Sistem Fluida dengan Openmodelica

PR yang diberikan oleh Pak Hariyotejo setelah pertemuan ketiga adalah melakukan analisa pemodelan sistem fluida yaitu berupa heating system dan three tanks dengan menggunakan open modelica.

Dari kedua sistem tersebut isi dari analisa pemodelan nya sebagai berikut :

1. Deskripsi/uraian fisik berdasarkan bagan yang ada

2. Prosedur analisa pemodelan

3. Analisa dan Interpretasi Hasil Pemodelan

4. Catatan konsep utama hukum fisika yang diimplementasikan dalam pemodelan

5. Berikan hasil-hasil simulasi parameter untuk mendukung kesimpulan yang diperoleh


Soal Heating System

Tugas OM 3.1.png

1. Deskripsi / uraian fisik berdasarkan bagan yang ada

Sistem diatas adalah sistem berbentuk siklus yang digunakan untuk memanaskan fluida yang ada di dalam tangki. Fluida di dalam tangki dihisap dengan pompa dan didorong ke sebuah heater, pada heater ini temperature fluida akan mengalami kenaikan karena ada perpindahan panas dari heater ke fluida. Kemudian fluida dialirkan melewati alat ukur temperature untuk mengetahui temperature pada fluida tersebut, kondisi fluida yang masih panas ini mengalir melewati valve yang berfungsi untuk mengatur seberapa besar debit yang akan masuk ke radiator, radiator ini akan menurunkan temperature fluida dengan menggunakan perpindahan panas memanfaatkan perbedaan antara temperature fluida dengan temperature ambient, setelah itu temperature fluida diukur kembali sebelum memasuki tangki awal. Parameter-parameter pada sistem three tanks ini adalah sebagai berikut :

Tangki

• Ketinggian Tangki = 2 m

• Cross Area = 0.01 m^2

• Level Start = 1 m


Pompa

• Tekanan Input = 110000 Pa

• Tekanan Output = 130000 Pa

• Rotational Speed = 1500 Rev/min


Heater

• Panjang pipa = 2 m

• Diameter pipa = 0.01 m

• Tekanan awal = 130000 Pa


Burner

• Kalor = 1600 Watt

• Temperatur Reference = 70

• Alpha = -0.5 1/K


Pipa

• Panjang pipa = length = 10 m

• Tekanan awal = 130000 Pa

• Diameter pipa = 0.1 m


Valve

• Pressure drop = 10000 Pa

• Mass flow rate = 0.01 kg/s


Radiator

• Panjang pipa = 10 m

• Diameter pipa = 0.01 m

• Tekanan awal = 110000 Pa

• Temperatur awal = 50 C


Wall

• Thermal Conductance = 80 W/K


2. Prosedur analisa pemodelan

Dalam melakukan permodelan analisa heating system di openmodelica, kita dapat dilakukan dengan langkah-langkah berikut:

• Membuka aplikasi openmodelica

• Membuka library openmodelica dengan memilih file heating system yang dapat ditemukan memalui cara berikut: (Modelica -> Fluid -> Example -> Heating system)

• Cek gambar permodelan yang akan di analisis pada diagram view, jika sesuai maka check kodingan dengan mengklik symbol checklist berwarna hijau.

• Jika semua variable sudah sesuai, maka lakukan simulasi dengan meng klik symbol (->) berwarna hijau dan tunggu beberapa saat untuk mengatahui hasil simulasinya.

• Untuk melihat hasil simulasi maka, klik ploting yang terdapat di pojok kanan bawah sebelah model sehingga kita dapat melihat hasil simulasi dan dapat di replesentasikan dalam bentuk grafik dengan menceklis variable yang ingin dibandingkan.

• Jika ingin mensimulasikan pada interval waktu tertentu maka, kit bisa klik symbol S yang ada pada bagian model (lokasinya bersebelahan dengan tanda (->)) lalu mengubah stop time dan start time sesuai dengan interval waktu yang kita butuhkan.

• Disini kita juga bisa mengganti parameter sesuai dengan yang kita inginkan seperti dimensi tangki, pipa, heater, pompa, radiator, valve dan burner tetapi tidak bisa dilakukan ketika didalam example. Alternatifnya adalah kita bisa mengganti parameter tersebut ketika berada didalam variable browser setelah melakukan simulasi. Setelah itu lakukan re-simulate.


3. Analisa dan Interpretasi Hasil Pemodelan

Pemodelan heating system dilakukan untuk memanaskan fluida yang ada didalam tangki dengan cara dipompa melalui sebuah heater yang sumber panas nya di supply oleh burner, fluida yang telah melewati burner tersebut akan mengalami kenaikan temperatur. Kontrol sederhana dipasangkan ke masing-masing komponen, sehingga sistem pemanas dapat diatur dengan katup, pompa mengontrol tekanan, burner mengontrol temperatur. OLeh karena itu kita dapat mengetahui temperatur pada fluida dengan berbagai macam pengaturan parameter pada sistem melalui bantuan open modelica. Tetapi saat model sudah di check dan dilakukan simulasi, aplikasi mengalami error sehingga tidak bisa mengeluarkan hasil.


Tugas OM 3.6.png


4. Catatan konsep utama hukum fisika yang diimplementasikan dalam pemodelan

Hukum fisika yang dapat diterapkan pada pemodelan tersebut adalah hukum kekekalan energi pada pompa dan hukum mengenai perpindahan panas dari heater dan radiator ke fluida. Kekekalan energi pada pompa mengubah energi mekanik pada motor diubah menjadi energi pada aliran fluida. Energi yang diterima oleh fluida akan digunakan untuk menaikkan tekanan dan mengatasi gesekan pada pipa dan fitting yang terdapat pada sistem yang dilalui. Hukum tentang perpindahan panas digunakan untuk mengetahui temperatur pada fluida setelah mengalami perpindahan panas dari heater ke fluida dan digunakan untuk menghitung seberapa besar panas yang terbuang ketika fluida melewati suatu radiator.


5. Berikan hasil-hasil simulasi parameter untuk mendukung kesimpulan yang diperoleh

Karena simulasi mengalami error, maka hasil dari sistem ini tidak dapat disimpulkan


Soal Three Tanks

Tugas OM 3.2.png

1. Deskripsi / uraian fisik berdasarkan bagan yang ada

Sistem diatas adalah sistem yang mendemonstrasikan penggunaan 3 buah tangki yang memiliki ukuran yang sama, posisi ketinggian dan tinggi air didalam tangki yang berbeda. Sistem ini bertujuan untuk membuat level ketinggian permukaan air dari ketiga tangki sama jika ditinjau dari 1 referensi. Parameter-parameter pada sistem heating system ini adalah sebagai berikut :

Tangki 1

• Ketinggian Tangki = 12 m

• Cross Area = 1 m^2

• Level Start = 8 m


Tangki 2

• Ketinggian Tangki = 12 m

• Cross Area = 1 m^2

• Level Start = 3 m


Tangki 3

• Tinggian Tangki = height = 12 m

• Cross Area = 1 m^2

• Level Start = 3 m


Pipe1

• Panjang pipa = 2 m

• ketinggian port_b – ketinggian port_a = height_ab = 2 m

• Diameter pipa = 0.1 m


Pipe2

• Panjang pipa = length = 2 m

• ketinggian port_b – ketinggian port_a = height_ab = 2 m

• Diameter pipa = 0.1 m


Pipe3

• Panjang pipaa = length 2 m

• ketinggian port_b – ketinggian port_a = height_ab = -1 m

• Diameter pipa = 0.1 m


2. Prosedur analisa pemodelan

Dalam melakukan permodelan analisa three-tank di openmodelica, kita dapat dilakukan dengan langkah-langkah berikut:

• Membuka aplikasi openmodelica

• Membuka library openmodelica dengan memilih file three tank yang dapat ditemukan memalui cara berikut: (Modelica -> Fluid -> Example -> Tanks -> Three Tanks)

• Cek gambar permodelan yang akan di analisis pada diagram view, jika sesuai maka check kodingan dengan mengklik symbol checklist berwarna hijau.

• Jika semua variable sudah sesuai, maka lakukan simulasi dengan meng klik symbol (->) berwarna hijau dan tunggu beberapa saat untuk mengatahui hasil simulasinya.

• Untuk melihat hasil simulasi maka, klik ploting yang terdapat di pojok kanan bawah sebelah model sehingga kita dapat melihat hasil simulasi dan dapat di replesentasikan dalam bentuk grafik dengan menceklis variable yang ingin dibandingkan.

• Jika ingin mensimulasikan pada interval waktu tertentu maka, kit bisa klik symbol S yang ada pada bagian model (lokasinya bersebelahan dengan tanda (->)) lalu mengubah stop time dan start time sesuai dengan interval waktu yang kita butuhkan.

• Disini kita juga bisa mengganti parameter sesuai dengan yang kita inginkan seperti dimensi tangki dan pipa, tetapi tidak bisa dilakukan ketika didalam example. Alternatifnya adalah kita bisa mengganti parameter tersebut ketika berada didalam variable browser setelah melakukan simulasi. Setelah itu lakukan re-simulate


3. Analisa dan Interpretasi Hasil Pemodelan

Pemodelan three tanks dilakukan dengan menggunakan 3 tangki dengan ukuran yang sama, dengan kondisi awal (t=0) yaitu posisi tangki dan level air pada tangki berbeda. Seiring berjalan nya waktu, level air dari ketiga tangki ini akan mengalami kesetimbangan (tinggi permukaan air akan sama). Level air dan volume pada tangki 1 dan tangki 2 akan menurun dan level air dan volume pada tangki 3 akan meningkat. Hal ini bisa kita buktikan melalui simulasi dengan bantuan open modelica dan ditunjukan pada grafik dibawah ini


Tugas OM 3.3.png


4. Catatan konsep utama hukum fisika yang diimplementasikan dalam pemodelan

Hukum fisika yang dapat diterapkan pada pemodelan tersebut adalah persamaan continuitas dan asas bernoulli. Dimana persamaan continuitas bisa kita gunakan untuk menghitung waktu yang dibutuhkan agar ketiga tangki tersebut dalam kondisi setimbang, dan asas bernoulli digunakan untuk menentukan ketinggian permukaan air pada ketiga tangki tersebut pada kondisi tekanan, massa jenis, dan kecepatan aliran yang sama.


5. Berikan hasil-hasil simulasi parameter untuk mendukung kesimpulan yang diperoleh

Pada parameter awal yang saya gunakan menunjukan bahwa ketinggian air dari ketiga tangki ini akan sama pada waktu 132 detik

Tugas OM 3.4.png


Selanjutnya saya akan merubah salah satu parameter yang ada pada sistem tersebut, yaitu mengganti level ketinggian air pada tangki 3 yang awalnya 3 meter menjadi 10 meter. Maka waktu yang diperlukan untuk mencapai keadaan setimbang lebih cepat yaitu sekitar 90 detik.


Tugas OM 3.5.png


Pertemuan Sistem Fluida 4 (3 Desember 2020)

Pada hari ini kelas diisi oleh pak Hariyotejo. Materi kelasnya adalah remodeling dari examples pada open modelica.

Berikut ini adalah perbandingan antar model dan remodel two tanks


Sisflu4.1.png


Sisflu4.2.png


Sisflu4.3.png


Sisflu4.4.png


Berikut ini adalah perbandingan antar model dan remodel empty tanks


Sisflu4.4.1.png


Sisflu4.4.2.png


Sisflu4.4.3.png


Sisflu4.4.4.png


Kemudia setelah melakukan perbandingan antara model dan remodel, kami semua mencoba memodelkan mass balance


Sisflu4.5.png


Sisflu4.6.png


PR 4 Analisa Pemodelan Sistem Combine Cycle Power Plant dengan Openmodelica

PR yang diberikan oleh Pak Hariyotejo setelah pertemuan keempat adalah melakukan analisa pemodelan sistem Combine Cycle Power Plant dengan menggunakan open modelica.


PR Sisflu1.1.png


Dari sistem tersebut isi dari analisa pemodelan nya sebagai berikut :

1. Bagaimanakah analisa termodinamika (konservasi massa dan energi) pada sistem tersebut, buat skematik analisisnya.

Pada sistem diatas, model digunakan untuk mensimulasikan beban reduksi langkah power generator dari 100% menjadi 50% dalam jangka waktu 800 detik Secara sederhana, berikut adalah process flow diagram dari sebuah Combined Cycle Power Plant


PR Sisflu2.png


1. Gas Turbine

• Air compressor Berguna untuk menghisap udara dari luar untuk menaikan tekanan udara yang di alirkan menuju combustion chamber.Pada compressor terjadi proses isentropik.

• Combustion Chamber Tempat dimana bahan bakar dan udara Bersatu untuk menciptakan suatu energi yaitu udara panas yang dialirkan menuju turbin melalui nozzle,dimana pada alat ini tekanan dianggap konstan (Isobarik).

• Turbin Berfungsi untuk memutar generator untuk menghasilkan suatu energi. Gas Turbine yang berputar akibat dari panas yang di hasilkan pada combustiom chamber yang di aliri oleh nozzle menuju turbin . Diatas merupakan sistem dari gas turbin.Panas yang ada di gas turbin di alirkan menuju Heat recovery Steam generator.


2. Steam Turbine Heat Recovery Steam Generator menangkap gas buangan dari gas turbine

• HRSG menangkap gas buangan dari Gas Turbine yang jika tidak dipasang, dapat keluar melalui saluran pembuangan.HRSG berguna untuk memanaskan Kembali uap pembuangan dari gas turbine untuk dialiri ke turbin,yang dimana turbin 2 bertugas memutar generator untuk menghasilkan suatu energi

• Aliran steam ini kemudian melewati Steam Turbine, sehingga membuat Steam Turbine berputar dan menggerakkan generator drive shaft. Generator drive shaft ini kemudian mengubah sisa energi buangan dari Gas Turbine menjadi listrik.

• Hasil buangan dari turbin dialirkan menuju kondesor untuk merubah sifat dari uap menjadi cair agar dapat didorong oleh pompa menuju HRSG untuk dipanaskan Kembali.


2. Lakukan identifikasi komponen-komponen utama pada sistem serta berilah deskripsi fungsi kerjanya dalam sistem dan penjelasan analisis parameter yang digunakan.

Karena sistem diatas merupakan sistem Combined Cycle Power Plant, maka terdapat 2 bagian utama dalam sistem pembangkit ini, yaitu Steam turbine dan Gas Turbine.

3. Medium fluida kerja apa saja yang terjadi dalam proses siklus tersebut, dan bagaimanakah proses analisis perhitungan dalam pemodelan

4. Jelaskan flow line (jalur koneksi) masing-masing yang diberi warna hitam, merah, dan biru sesuai dengan interkoneksi yang diberikan dalam diagram tersebut.