Difference between revisions of "Valve-Mizan Eryandhika Guntorozi"
Line 440: | Line 440: | ||
[[File:Threetanks4.jpg|400px|thumb|center|Grafik laju volume alir fluida]] | [[File:Threetanks4.jpg|400px|thumb|center|Grafik laju volume alir fluida]] | ||
− | = Pertemuan 4: | + | = Pertemuan 4: 3 Desember 2020 = |
Revision as of 00:12, 3 December 2020
Contents
Pendahuluan
بِسْمِ اللهِ الرَّحْمَنِ الرَّحِيْمِ
السَّلاَمُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُهُ
Perkenalkan, nama saya Mizan Eryandhika Guntorozi atau yang biasa dipanggil Mizan, saya merupakan mahasiswa S1 Paralel Teknik Mesin Universitas Indonesia. Berikut adalah biodata diri saya dan juga catatan-catatan saya mengenai Perkuliahan Jarak Jauh(PJJ) mata kuliah Sistem Fluida sampai dengan Ujian Akhir Semester(UAS). Catatan tersebut meliputi tugas yang diberikan pada setiap pertemuan juga progress pembelajaran saya setiap diadakan pertemuan. Saya berharap page ini dapat memberikan manfaat bagi siapapun yang membaca. Terimakasih.
Pertemuan 1: 12 November 2020
Pertemuan pada hari ini hari kamis, 12 November 2020, diadakan bersamaan dengan mahasiswa CFDSOF, dimana dijelaskan fungsi valve dan mahasiswa diharapkan dapat mensimulasikan gate valve dengan menggunakan aplikasi CFDSOF melalui video tutorial di channel youtube CFDSOF dibawah ini:
1. https://www.youtube.com/watch?v=RANhtK5u5W0&ab_channel=CFDSOFSoftware
2. https://www.youtube.com/watch?v=qpumUG0veRs
Dalam mengikuti mata kuliah sistem fluida ini, mahasiswa diharapkan dapat menunjang ilmu fluida yang juga dibutuhkan pada jaman sekarang di industry 4.0, semua hal disimulasikan untuk menghemat waktu dan biaya, memaksimalkan teknologi dan software untuk bisa menghitung atau memecahkan masalah yang ada.
Pak Dai menyampaikan bahwa, belajar sistem fluida diharapkan bisa maksimal dengan menggunakan teknologi CFDSOF, ini juga bisa membantu kita untuk bisa memecahkan masalah yang ada, dimana aplikasi ini mem-breakdown melibatkan persamaan matematis dasar di setiap titik, karena di setiap titik hasilnya berbeda beda.
Penggunaan aplikasi CFDSOF juga bisa membantu dalam aspek matematisnya. HK konservasi massa, momentum dan energi dari rumus dasar tersebut dapat disimplifikasi menjadi persamaan-persamaan dasar di mata kuliah mekanika fluida. Kemudian rumus-rumus tadi di CFDSOF ini dapat memecah persamaan2 yang sudah ada, seperti contoh membuat mesh pada inlet dan outlet yang bisa disebut control volume, dari perkumpulan rumus tadi bisa diselesaikan menggunakan aplikasi CFDSOF dan di iterasikan menjadi hasil dapat terjadi distribusi kecepatan dan tekanan misalnya
Kemudian, Pak Dai memberikan Latihan Simulasi Gate Valve, berikut ini adalah hasil percobaan simulasi gate valve opened yang saya lakukan
Tugas 1 : Mensimulasikan opened gate valve
Langkah pertama yang dilakukan adalah mengimport model valve dan menentukan lajur aliran serta penyesuaian ukuran valve yang akan di simulasi.
Langkah selanjutnya adalah menentukan surface refinement agar model yang disimulasikan sesuai kehendak apakah mau kasar atau halus, disini surface refinement level yang saya gunakan adalah level 3.
Kemudian setelah variabel-variabel dan data-data sudah sesuai, dilakukan iterasi atau simulasi untuk selanjutnya di lihat di aplikasi paraview, seperti gambar di bawah ini, berbeda dengan video tutorial yang ada di youtube, hasil iterasi valve saya sebanyak 1518 iterasi dan menunjukkan konvergen.
Setelah dilakukan iterasi, selanjutnya muncul pilihan untuk membuka model di aplikasi paraview, seperti pada gambar di bawah ini tampilan paraview nya.
Kemudian tujuan saya adalah mencari pressure yang ada di inlet ataupun outlet juga pressure total. Rumus yang digunakan adalah:
-pstatic= p*densitas fluida -magU= akar dari kecepatan aliran dalam dimensi xyz dikuadratkan -pdynamic= 1/2*densitas fluida*magU^2 -ptotal= pstatic+pdynamic
Hasil distribusi pressure pada gate valve ini, tidak terlalu terlihat untuk bagian inlet dan outlet karena skala yang saya gunakan lumayan tinggi untuk bagian pressure dengan warna yang merah yaitu 1e+7. Kemudian setelah saya analisa lebih lanjut , pada bagian inlet dan outlet, tekanan yang lebih besar lebih terlihat pada bagian inlet untuk seluruh permukaannya, tetapi semakin berjalannya aliran ke arah outlet, pada bagian outlet mulai terlihat pressurenya tetapi terdistribusi hanya pada bagian tengahnya saja, tidak di sekeliling diameter outlet tersebut.
Setelah dilakukan perhitungan, saya dapatkan nilai pinlet dan poutlet yaitu sebesar 1666.24 dan 217.37 berurutan. Dimana dapat dihitung delta p nya adalah pinlet-poutlet = 1666.24-217.37 = 1448.87 seperti gambar di bawah ini:
Setelah itu dapat dilakukan perlakuan untuk mempermudah penglihatan kita, yaitu membuat grafik ptotal dengan cara melakukan filters dan plot over line untuk menampilkan distribusi pressure pada gate valve dalam grafik seperti gambar di bawah ini:
Kemudian, dapat pula dilakukan perpotongan pada gate valve dengan menggunakan opsi slice dan melakukannya pada sumbu z normal untuk bisa memotong gate valve tepat di tengah-tengah untuk mempermudah kita melihat distribusi aliran di dalam gate valve itu sendiri. Hasil yang saya dapat untuk pressure bagian inlet dan outlet tekanan yang lebih besar terlihat lebih pada di inlet untuk seluruh permukaannya, tetapi semakin berjalannya aliran ke arah outlet, pada bagian outlet mulai terlihat pressurenya tetapi terdistribusi hanya pada bagian tengahnya saja, tidak di sekeliling diameter outlet tersebut.
Lalu, untuk perbandingan, saya merubah tampilan yang tadinya pressure menjadi kecepatan atau magnitude U, hasilnya seperti gambar di bawah ini. Sekali lagi mungkin tidak terlalu terlihat karena range yang terlalu tinggi. Tetapi setelah saya analisa berbeda dengan pressure, pada simulasi kecepatan ini berbanding terbalik, pada bagian inlet awalnya tidak terlalu cepat distribusi kecepatan aliran yang terjadi, semakin ke arah outlet kecepatan semakin bertambah.
Dalam kasus ini dapat di tarik kesimpulan, bahwa pressure berbanding terbalik dengan kecepatan pada simulasi open gate valve yang saya lakukan ini.
Pertemuan 2: 19 November 2020
Pada pertemuan kali ini, Pak Dai menjelaskan tentang mendesain pompa, disini dijelaskan bahwa seorang insinyur harus mengetahui betul power untuk bisa merangkai atau mendesain suatu sistem yang baik. Pak Dai memberi gambaran mengenai pompa impeller, perlu dicatat juga bahwa perbedaan pompa dengan turbin hanya di arahnya saja. Power dapat diperoleh dengan rumus P= ρ.g.H.Q juga dapat dicari dengan segitiga kecepatan secara teoritis. Kecepatan juga penting dalam menghitung daya impeller, dapat didapatkan melalui teori atau matematis juga bisa didapatkan dengan aplikasi CFD. Ilmu fluida dapat diacu dalam 3 aspek utama yaitu metode teoritis, eksperimen dan juga numerik(CFD). Selanjutnya hasil diskusi pada hari ini dapat disimak seperti berikut ini.
1. Sistem Fluida. Sistem Fluida adalah sistem yang terdiri dari beberapa part dan saling bekerja sama dengan aturan tertentu yang tersusun untuk mengalirkan suatu fluida dari satu tempat ke tempat lain. Pengertian sistem itu sendiri gambarannya adalah di dunia semua hal adalah subsistem kecuali alam semesta. Sebuah sistem adalah gabungan dari elemen elemen yang saling bekerja sama untuk menjalankan satu tujuan. Contohnya pompa itu sendiri juga dapat diklasifikasikan sebagai suatu sistem karena dia terdiri dari elemen seperti sudu impeller tip dan lain lain yang bertujuan sama yaitu mengubah suatu energi mekanik menjadi energi kinetik (rotor ke fluida)
2. Hasil kerja simulasi kelas CFD. Bang Abi Rizky menjelaskan pekerjaan simulasinya yaitu vawt (vertical axis wind turbine). Simulasi dijalankan dengan CFDSOF dan Paraview. Simulasi ini menerapkan penglihatan angle of attack dari airfoil tampak atas, yang disimulasikan adalah untuk melihat kecepatan dan tekanan yang terjadi. Jika di dalam suatu sistem ada perputaran, maka akan terbentuk vortex. Ketika disimulasikan, airfoil yang bawah terjadi perubahan kecepatan dan perpindahan energi tetapi tidak se signifikan yang diatasnya. Arah gerak angin dari kiri ke kanan. Seperti gambar di bawah ini. Olakan besar terjadi karena separasi karena ada vektor kecepatan yang berlawanan dengan arah lain, untuk gambaran semakin besar angle of attacknya yang besar sehingga membuat separasi yang besar pula, sedangkan untuk angle of attack dapat berubah-ubah karena berputar. Separasi dapat diperkecil seperti belokan-belokan pada geometri seperti contoh bola golf dengan lekukan-lekukan yang ada bola dapat travel dengan jauh.
3. Pendekatan ilmu sistem fluida. Bang Edo menjelaskan bagaimana cara kita menerapkan ilmu fluida untuk bisa mendesain suatu sistem fluida dengan aplikasi CFD. Bang Edo menggambarkan bahwa pendekatan teoritis tidak cukup untuk kita bisa menguasai sistem fluida seperti contoh turbin crossflow. Tambahannya adalah pendekatan secara CFD kita bisa mensimulasikan secara realtime dan menggunakan variabel-variabel tertentu dan kondisi tertentu pula, berbeda dengan cara pendekatan teoritis seperti segitiga kecepatan, karena dapat dianalisa di suatu titik ataupun satu kondisi saja. Untuk itu diharapkan para mahasiswa dapat menguasai aplikasi CFD untuk bisa mendesain suatu sistem. Kita juga dapat mendapatkan torsi dan variabel-variabel lain dari aplikasi CFD ini.
Pendekatan teoritis dapat mengcrosscheck suatu pengaplikasian ilmu fluida yang telah di lakukan atau dieksperimenkan, untuk pendekatan ekperimen dapat menghitung yang teoritis tidak dapat hitung, sedangkan untuk pendekatan CFD murah dan dapat dilakukan di mana saja serta dapat melengkapi pendekatan teoritis. Sebenarnya 3 metode pendekatan ini tidak saling meniadakan tetapi saling melengkapi, masing-masing pendekatan mempunyai kelebihan dan kekurangan masing-masing. Seperti gambar di bawah ini.
4. Bedanya turbin impuls dan reaksi. Perbedaannya adalah pada impuls turbin, si fluida masuk lewat nozzle dan diantara blade biasanya untuk turbin air, pressure drop hanya terjadi di blade yang fixed, untuk sudunya sedikit yang kena, memanfaatkan head yang tinggi dan memanfaatkan energi yang lebih besar, menumbuk lebih optimal, impuls juga adanya perubahan momentum seperti gambar nomor 2 di bawah.
Turbin reaksi masuknya itu ada guide mechanism dan juga perputaran, pressure drop terjadi melewati turbin-turbinnya sesuai stagenya,head nya rendah dan kapasitasnya besar, terjadi akibat memanipulasi tekanan diatas yang besar sehingga tekanan dibawahnya kecil, sehingga terjadi gaya lengan dan terjadi momen atau torsi dan tidak ada perubahan arah seperti gambar nomor 1 di bawah.
Tugas 2: Belajar sistem fluida dengan menggunakan aplikasi OpenModelica
Pada Tugas kali ini, saya menggunakan model three tanks agar dipelajari untuk melihat simulasi alir fluida dari tank satu ke tank lainnya sampai dengan tank 3. Berikut adalah properties yang saya gunakan:
T ambient: 20 derajat celsius P ambient: 1.01325 bar Properties pipa sama semua: diameter=0.1 m; panjang=2 m; tinggi pipa 1 dan 2 b-a= 2 m; tinggi pipa 3 b-a= -1 m Properties tank: tinggi tank 1,2,3= 12 m; tinggi air tank 1= 12 m; tinggi air tank 2 dan 3= 5 m
Model yang digunakan adalah model three tanks seperti gambar di bawah ini:
Kemudian, gambar berikut adalah settingan simulasi yang saya gunakan, yaitu waktu awal simulasi t1= 0s dan waktu akhir simulasi t2= 200s serta interval sebanyak 500.
Dari simulasi yang saya lakukan, terlihat grafik seperti di bawah ini, awalnya volume pada tank 1 paling tinggi karena full tank terisi air, seiring berjalannya waktu menurun sampai konstan karena mengisi tank 2 dan secara tidak langsung tank 3. Untuk volume pada tank 2, tidak terlalu banyak perubahan volume signifikan yang terjadi karena tank 2 hanya mengaliri ataupun meneruskan volume alir dari tank 1 ke tank 3, volume pada tank 2 awalnya menurun sehingga muncul teori, dengan tinggi air pada tank 1, menyebabkan aplikasi tekanan terjadi atau meningkat, sehingga kecepatan menurun, dan seiring berjalannya waktu, tekanannya menurun diikuti kecepatan alir volume yang meningkat, sehingga tank 2 volumenya meningkat sedikit sampai konstan. Untuk tank 3 volumenya selalu meningkat sampai konstan karena mendapatkan laju alir fluida dari tank 1 dan tank 2. Berikut adalah grafik yang muncul saat setelah dilakukan simulasi.
Berikut adalah file modelica yang saya gunakan untuk melakukan simulasi pada aplikasi OpenModelica: https://drive.google.com/file/d/144tFhITqrR3EUqqefcYzQVxUpLEqRnfm/view?usp=sharing
Pertemuan 3: 26 November 2020
Pada hari ini dilakukan perkuliahan sistem fluida dengan cara Learning by doing, konsep2 mekflu yang kita sudah dapat sebelumnya, nanti di sisflu kita belajar cara menerapkannya di sistem dan juga komponen-komponen fluidanya itu sendiri.
Pertemuan hari ini, Pak Dai ditemani oleh Pak Hariyo dengan tujuan belajar pada hari ini permodelan sistem fluida dengan aplikasi OpenModelica. Open Modelica ini bisa digunakan untuk melakukan desain dengan cara permodelan suatu sistem untuk diterapkan di bahasa komputer sebagai pemaksimalan atau keefektifan sistem itu sendiri. Sistem di lapangan nantinya bisa divalidasi nilai real dengan nilai pada permodelan juga dapat sebagai perbandingan mengenai desain sistem yang baik bagaimana.
Dengan menggunakan OpenModelica itu sebuah usaha untuk mempelajari suatu sistem aktual melalui sistem yang disimplifikasi. Sebuah model adalah sebuah sistem yang disederhanakan untuk ditranslasikan di bahasa komputer dari bahasa aktual.
1. Latihan perbedaan ketinggian pada dua tangki yang berbeda
Kemudian oleh Pak Hariyo, para mahasiswa diberikan paparan tentang cara melakukan permodelan akan 2 tangki yang memiliki perbedaan ketinggian dan kemudian akan disamakan ketinggian permukaan fluida diantaranya. Sebagai acuan, Pak Hariyo menggunakan block example Thermal> fluidheatflow> Two Tanks pada preset di OpenModelica. Berikut adalah model yang digunakan
Selanjutnya dilakukan proses validasi atau check. Apabila, variabel dan equation tidak sama pada proses chec,k maka sistem tersebut tidak balance. Kemudian dilakukan simulasi dengan mengklik tombol simulate dengan lambang tanda panah hijau ke kanan.
Setelah dilakukan simulasi, muncul hasil pada bagian plotting dengan ditemukannya variabel T1, T2, V_flow(laju volume alir di pipa dari tank1 ke tank 2), level1(level pada tank1), level2(level pada tank2). Jika kita ingin mengcrosscheck maka kita dapat mengklik tab modeling untuk kita baca pada bahasa modelingnya untuk memastikan variabel yang muncul. Seperti gambar berikut
Tujuan permodelan ini dengan properti volume yang berbeda dengan kedudukan yang sama dalam waktu 1.5s pada tangki dapat diartikan posisi level kedua tank sama yaitu 0.5m. Terdapat faktor variabel terhadap waktu yaitu dalam waktu 1.5 detik juga kita bisa dapatkan V_flow atau laju alir yang melalui pipa.
Untuk pertanyaan Number of intervals, selama waktu 0s-1.5s terjadi penyelesaian integrasi yaitu ada penyelesaian secara derivasi waktu. Intinya, prinsip dari aplikasi OpenModelica ini adalah menyelesaikan integrasi dari persamaan derivasi terhadap waktu nya. Konsep ini juga dapat digambarkan dengan trial dan error, tetapi apabila kita mau melakukan konsep trial dan error tadi kita bisa mengganti dari variabel ketinggian tangki nya itu sendiri bukan merubah waktu-waktu nya.
Apabila ingin mengganti medium fluida, dapat dilihat di preset Thermal> FluidHeatFlow> Media di sana terdapat banyak preset-preset mengenai medium atau fluida yang ingin digunakan. Kita buat di file modelica New bukan di Library, karena Library tidak dapat di edit bahasa modelica nya.
2. Latihan kedua mengenai empty tanks
Model yang digunakan pada latihan kedua ini adalah empty tanks yang dapat diperoleh dari Fluid> Examples> Tanks> Empty Tanks. Untuk tampilan permodelan yang lebih jelas dapat dipilih view di dan dapat disetting sehingga tampilan modelnya bisa lebih jelas
Kedua tank yang digunakan terdapat perbedaan ketinggian dan alirannya dialirkan secara vertikal ke tank 2. Tank 1 ketinggiannya 1m, tank 2 ketinggiannya 0m, disini akan dilakukan permodelan agar kita tau perbedaan ketinggian tangki atau laju alir berdasarkan waktu.
Selanjutnya, dapat dilakukan validasi check model, dan pastikan untuk equation dan variable nya sudah sama. Lalu, sudah dapat dilakukan simulasi, untuk symbolic warning tidak usah diabaikan.
Untuk hasilnya, kita dapat membandingkan volume dan ketinggian dari tank 1 dan tank 2, awalnya tank 1 penuh kemudian semakin turun, sebaliknya tank 2 awalnya kosong dan naik terus sehingga detik yang sama yaitu sekitar 34s. Variabel panjang pipa juga berpengaruh akan sistem tersebut, kalau pipa diperpanjang lebih lambat laju alir nya di tank 1, kalau ketinggian yang diperbesar maka dia lebih cepat laju alir nya.
Perlu dicatat, untuk setiap modelling block terdapat equation dan variabel masing-masing dari aspek matematisnya yang kemudian ditranslasikan oleh aplikasi OpenModelica ini sendiri.
3. Latihan ketiga melakukan model tentang simple cooling
Selanjutnya dipaparkan contoh lain yang bisa membantu kita bisa menggambarkan materi sistem fluida yaitu simple cooling. Preset ini terdapat di Libraries Thermal> FluidHeatFlow> Examples> SimpleCooling. Pada sistem tersebut ada variabel pompa, ada convection, heat flow, heat capacitor. Untuk diagramnya, awalnya jalur alir nya udara atau fluida dengan temperatur dan tekanan udara, di serap oleh pompa reservoir 1 di pompa sehingga melewati pipa dan output nya berupa udara yang sudah di cooling yang ada di reservoir 2. Caranya adalah terdapat sistem cooling di dalam pipa yang dilewati terdapat perpindahan panas konveksi, dan ada k dari fluida, ada heat flow dan melewati dinding pipa. Terjadi proses pendinginan di dalam pipa yang dialiri, dengan adanya heat flow yang dingin terjadi perpindahan panas secara konveksi dari luar pipa ke dalam pipa dan kita dapat lihat perubahan panasnya di heat capacitor.
Tugas 3: Menganalisis suatu sistem yang sudah jadi di aplikasi OpenModelica
Gambar 1: Sistem Heating
1. Deskripsi/uraian fisik berdasarkan bagan yang ada
Berdasarkan model yang digunakan dari simulasi model heating system terdapat beberapa part seperti tank untuk menyimpan dan mengalirkan fluida berupa air. Kemudian ada pompa untuk mengalirkan fluida yang akan mengalir ke arah sensor flow rate. Kemudian ada pipa nya yang dimana terdapat sistem heat exchanger untuk merubah suhu dari fluida agar menjadi output suhu yang diinginkan. Selanjutnya adalah terdapat sensor pengukur suhu sehingga didapatkan perubahan suhu. Lalu, ada valve sebagai stop dan go nya aliran fluida pada sistem, juga terdapat Radiator. Kemudian terdapat properties-properties seperti Tambient yaitu temperatur luar yang memasuki radiator, dan terdapat di output berupa sensor temperatur return sebagai hasil dari Takhir yang akan diamati. Berikut beberapa propertiesnya:
Tinggi tangki= 2 m; level tangki= 1 m; crossArea= 0.01 m^2 p_a inlet= 110000; p_b outlet= 130000 (pressure pada pompa) mass flow rate= 0.01 Q_flow= 1.6e3 W; Tref= 70degC(pada burner yang menyambung ke pipa 1) panjang pipa 1= 2 m; panjang pipa 2 dan 3= 10m; diameter pipa 1,2 dan 3= 0.01 m (pipa 1 yang terdapat burner, pipa 2 penyambung antara sistem pipa 1 heat exchanger dengan valve, pipa 3 penyambung antara valve dengan pipa yang berpengaruh dengan udara luar atau kondisi eksternal) pressure drop= 10000 Pa; elemen handle= start time 2000s (pada valve) pa start pada pipa 3= 110000 (yang menyambung dengan valve) wall yang menyambung dengan pipa 3= 1.6e3/20 W/K (wall nya merupakan thermal conductor)
2. Prosedur analisa pemodelan
Pada sistem permodelan ini berikut tahap-tahap untuk melakukan simulasi pada OpenModelica:
a) Pertama-tama yang dilakukan adalah mencari model example pada libraries di sebelah kiri yang dapat ditemukan di Modelica>Fluids>Examples>Heating System. b) Selanjutnya kita bisa pelajari bahasa-bahasa modelica, pada setiap tangki, bisa dengan cara melihat pada setiap block di tab diagram view, atau bisa juga dapat diganti bahasa modelicanya di tab text view. Apabila variabel- variabel yang ada sudah sesuai yang kita inginkan, kita bisa langsung mengecheck model terlebih dahulu sebelum melakukan simulasi. Cara kita tahu bahwa model yang ingin disimulasikan itu balance adalah pada tab check model terdapat jumlah equation dan jumlah variabel pada model yang telah kita buat, apabila jumlah nya sudah sama, maka dapat dipastikan model yang kita rangkai sudah balance. c) Lalu, dilakukan simulasi dengan mengklik logo S di tab simulate untuk mengatur waktu yang diperlukan untuk lama jalan nya simulasi. d) Setelah simulasi selesai, kita dapat melihat hasil angka yang kita ingin dapat kan, kemudian muncul grafik pada tab plotting sehingga dapat dilakukan analisis selanjutnya.
3. Analisa dan Interpretasi Hasil Pemodelan
Variabel-variabel yang terdapat pada sistem heating ini adalah 538 dan equation dengan jumlah sama yaitu 538 artinya sistem sudah balance. Trivial equation yang didapatkan adalah 113 dari permodelan yang digunakan. Parameter pada model terdapat pada Pmin dan Pmax pada simulasi, terdapat juga Tmin dan Tmax sebagai interval dalam pengujian yang diamati oleh penguji dari heating system. Parameter lain yang terdapat pada simulasi tersebut adalah perubahan energi dan perubahan entalpi dari pipe sebagai contohnya. Terjadi karena gesekan antara fluida dengan permukaan pipe akibat kekasaran dari permukaan pipa.
Parameter lain yang digunakan pada pipe adalah panjang pipe, sehingga memengaruhi hasil daya yang akan digunakan oleh pompa, diameter pipe yang akan memengaruhi debit fluida yang mengalir, viskositas dari fluida yang digunakan, dan jumlah bilangan Re dari fluida karena akan memengaruhi jenis aliran apa yang digunakan, seperti laminar atau turbulen.
Dalam sistem heating juga terdapat text view. Dapat dilihat command tangki seperti di bawah ini:
Modelica.Fluid.Vessels.OpenTank tank( redeclare package Medium = Medium, crossArea=0.01, height=2, level_start=1, nPorts=2, massDynamics=Modelica.Fluid.Types.Dynamics.FixedInitial, use_HeatTransfer=true, portsData={Modelica.Fluid.Vessels.BaseClasses.VesselPortsData(diameter= 0.01),Modelica.Fluid.Vessels.BaseClasses.VesselPortsData(diameter= 0.01)}, redeclare model HeatTransfer = Modelica.Fluid.Vessels.BaseClasses.HeatTransfer.IdealHeatTransfer (k=10), ports(each p(start=1.1e5)), T_start=Modelica.SIunits.Conversions.from_degC(20)) annotation (Placement(transformation(extent={{-80,30},{-60,50}})));
Disana menunjukkan variabel crossArea, tinggi tangki dan ketinggian air pada tangki di dalam sistem. Selanjutnya aliran fluida mengalir ke pompa dengan bahasa modelica yang digunakan adalah seperti berikut:
Machines.ControlledPump pump( redeclare package Medium = Medium, N_nominal=1500, use_T_start=true, T_start=Modelica.SIunits.Conversions.from_degC(40), m_flow_start=0.01, m_flow_nominal=0.01, control_m_flow=false, allowFlowReversal=false, p_a_start=110000, p_b_start=130000,
dapat dilihat juga variabel-variabel yang terjadi di dalam pompa seperti mass flow rate dan pressure a yaitu inlet dan pressure b yaitu outlet. Model bahasa modelica ada juga yang serupa. Karena aliran dari pompa lanjut ke valve dengan bahasa open modelica Modelica.Fluid.Valves.ValveIncompressible valve(, kemudian dapat dilihat pula variabel-variabel pada pipa 1 yang menyambung ke heater dengan command Pipes.DynamicPipe heater(, pipa yang menyambung ke radiator dengan command Pipes.DynamicPipe radiator(, juga pada sistem heating ini terdapat heater dan command yang digunakan adalah seperti di bawah ini:
Modelica.Thermal.HeatTransfer.Sources.FixedHeatFlow burner( Q_flow=1.6e3, T_ref=343.15, alpha=-0.5) annotation (Placement(transformation(extent={{16,30},{36,50}}))); inner Modelica.Fluid.System system( m_flow_small=1e-4, energyDynamics=Modelica.Fluid.Types.Dynamics.SteadyStateInitial) annotation (Placement(transformation(extent={{-90,70},{
dimana T_ref adalah temperatur referensi burner tersebut yang menyambung dengan pipa 1 sebagai heater agar aliran fluida yang mengalir dalam sistem tersebut tetap terjaga temperatur yang diinginkan untuk output nya nanti. Terakhir adalah equation yang berfungsi untuk menyambung-nyambungkan part-part yang berbeda agar menjadi suatu kesatuan dan menjadi suatu sistem yang balance.
equation tankLevel = tank.level; connect(sensor_m_flow.m_flow, m_flow) annotation (Line(points={{-10,31}, {-10,40},{0,40}}, color={0,0,127})); connect(sensor_m_flow.port_b, heater.port_a) annotation (Line(points={{0,20},{0, 20},{30,20}}, color={0,127,255})); connect(T_ambient.port, wall.port_a) annotation (Line( .... --> (dan masih banyak command untuk menyambungkan part-part yang lainnya)
4. Catatan konsep utama hukum fisika yang diimplementasikan dalam pemodelan
Konsep dari hukum fisika yang digunakan pada percobaan simulasi ini terdapat pada analisa yang telah dijelaskan mengenai interpretasi model, dimana terdapat konversi energi, sebagai contoh energi berubah pada aliran fluida yang mengenai permukaan dari pipe maka karena gesekan aliran fluida berubah tekanannya dan energinya menjadi panas. Kemudian perubahan fase pada saat fluida melewati pipa dengan heat exchanger dimana fase air dapat berubah menjadi gas. Hukum lainnya seperti konversi massa dan konversi momentum dan juga energi yang sudah disebutkan sebelumnya:
Konservasi massa - dm/dt = 0 Konservasi momentum - M. dV/dt = sigma Konservasi energi - dE/dt = W+Q
Kemudian hukum lain yaitu di dalam sistem dapat terjadi perubahan jenis aliran fluida dari laminar ke turbulen, karena dalam heat transfer jenis aliran turbulen dapat merubah temperatur fluida di dalam sistem tersebut. Kemudian viskositas juga berperan dalam mendapatkan bilangan Re untuk mengklasifikasi jenis aliran pada suatu titik di sistem tersebut.
Re = Inertia Force/Friction Force Re = ρ v D / μ
5. Berikan hasil-hasil simulasi parameter untuk mendukung kesimpulan yang diperoleh
Sejauh ini, untuk kesimpulan simulasi yang saya lakukan di aplikasi OpenModelica ini saya belum bisa menemukan kesimpulan yang dapat ditarik dari sistem Heating ini, karena pada saat saya melakukan simulasi, mungkin terdapat beberapa variabel yang harus dicari terlebih dahulu ataupun beberapa variabel yang diperlukan belum bisa dimasukkan karena kelas model yang digunakan adalah model examples dimana kita tidak dapat merubah variabel pada model pada library example yang sudah jadi. Pada saat saya ingin simulasi, muncul tulisan error seperti dibawah ini:
Gambar 2: Sistem three tanks
1. Deskripsi/uraian fisik berdasarkan bagan yang ada
Berikut adalah properties yang saya gunakan:
T ambient: 20 derajat celsius P ambient: 1.01325 bar Properties pipa sama semua: diameter=0.1 m; panjang=2 m; tinggi pipa 1 dan 2 b-a= 2 m; tinggi pipa 3 b-a= -1 m Properties tank: tinggi tank 1,2,3= 12 m; tinggi air tank 1= 12 m; tinggi air tank 2 dan 3= 5 m
Dari properties yang digunakan, terlihat bahwa, permodelan 3 tangki ini adalah untuk mencari laju alir pada setiap tangki yang mengalir pada setiap pipa pula. Simulasi ini dilakukan untuk mengetahui tinggi aliran pada setiap tangki dalam suatu waktu tertentu, sehingga kita tahu perubahan laju alir pada masing-masing titik tangki atau pipa serta ketinggian masing-masing tangki apakah berpengaruh terhadap waktu.
2. Prosedur analisa pemodelan
Pada sistem permodelan ini berikut tahap-tahap untuk melakukan simulasi pada OpenModelica:
a) Pertama-tama yang dilakukan adalah mencari model example pada libraries di sebelah kiri yang dapat ditemukan di Modelica>Fluids>Examples>Tanks>Three Tanks. b) Selanjutnya kita bisa pelajari bahasa-bahasa modelica, pada setiap tangki, bisa dengan cara melihat pada setiap block di tab diagram view, atau bisa juga dapat diganti bahasa modelicanya di tab text view. Apabila variabel- variabel yang ada sudah sesuai yang kita inginkan, kita bisa langsung mengecheck model terlebih dahulu sebelum melakukan simulasi. Cara kita tahu bahwa model yang ingin disimulasikan itu balance adalah pada tab check model terdapat jumlah equation dan jumlah variabel pada model yang telah kita buat, apabila jumlah nya sudah sama, maka dapat dipastikan model yang kita rangkai sudah balance. c) Lalu, dilakukan simulasi dengan mengklik logo S di tab simulate untuk mengatur waktu yang diperlukan untuk lama jalan nya simulasi. d) Setelah simulasi selesai, kita dapat melihat hasil angka yang kita ingin dapat kan, kemudian muncul grafik pada tab plotting sehingga dapat dilakukan analisis selanjutnya.
3. Analisa dan Interpretasi Hasil Pemodelan
Pada tampilan text view kita dapat melihat bahasa modelica yang digunakan pada sistem tersebut. Terdapat command-command bahasa modelica yang bisa kita telaah lebih lanjut lagi, terdapat 261 equation dan juga 261 variabel. Bahasa modelica program tersebut berisi data-data dan variabel-variabel yang kita inginkan dan juga terdapat rumus-rumus perhitungan yang diturunkan dari hukum fisika pada model sistem tersebut. Kita dapat menginput fluida yang akan kita gunakan dalam sistem, tetapi pada sistem ini kita gunakan air. Data-data fluida air dan juga fluida lainnya dapat kita lihat dan kita cari dalam preset-preset OpenModelica yang sudah ada, sehingga dapat memudahkan kita melakukan command-command yang dibutuhkan untuk bisa mengintrepetasikan fluida air yang ingin kita gunakan.
Selanjutnya, kita dapat melihat pada kodingan untuk meng-input tangki-tangki yang akan kita gunakan dalam sistem permodelan ini. Command untuk tangki 1 dapat dilihat sebagai berikut :
Modelica.Fluid.Vessels.OpenTank tank1(
crossArea=1, redeclare package Medium = Medium, use_portsData=true, height=12, level_start=12, nPorts=1, portsData={Modelica.Fluid.Vessels.BaseClasses.VesselPortsData(diameter= 0.1)}) annotation (Placement(transformation(extent={{-80,20},{-40,
pada kodingan tersebut dapat dilihat ada Cross area yang menunjukan luas, height = tinggi tanki, level start = ketinggian air awal, dan properties-properties lainnya. Begitu pula untuk tanki 2 dan tanki 3.
Untuk command-command dari pipa nya dapat di lihat sebagai berikut:
Modelica.Fluid.Pipes.StaticPipe pipe1( redeclare package Medium = Medium, allowFlowReversal=true, height_ab=2, length=2, diameter=0.1) annotation (Placement(transformation( origin={-60,-10}, extent={{-10,-10},{10,10}}, rotation=90)));
Setelah semua data di input, dapat dihubungkan dengan equation-equation sebagai berikut
equation
connect(pipe1.port_a, pipe2.port_a) annotation (Line(points={{-60,-20},{-60, -40},{0,-40},{0,-30},{0,-20}}, color={0,127,255})); connect(pipe2.port_a, pipe3.port_a) annotation (Line(points={{0,-20},{0,-20}, {0,-40},{60,-40},{60,-30}}, color={0,127,255})); connect(pipe3.port_b, tank3.ports[1]) annotation (Line(points={{60,-10},{60,-10},{60,10}}, color={0,127,255})); connect(pipe1.port_b, tank1.ports[1]) annotation (Line(points={{-60,0},{-60, 10},{-60,20}}, color={0,127,255})); connect(pipe2.port_b, tank2.ports[1]) annotation (Line(
Equation tersebut bisa berguna untuk menghubungkan antara pipa dengan pipa dan pipa dengan tangki-tangki pada kodingan sebelumnya. Dengan hitungan matematis disini command yang sudah di program nantinya dapat dilihat hasil simulasinya apabila kodingan tersebut sudah benar dan sesuai dengan hukum fisika dan matematika. Oleh karena itu, pada soal nomer 4 saya akan memberikan catatan mengenai konsep-konsep hukum fisika yang ada pada sistem permodelan ini.
4. Catatan konsep utama hukum fisika yang diimplementasikan dalam pemodelan
Hukum fisika dalam pemodelan tersebut adalah hukum tekanan hidrostatis dan hukum bernoulli dirumuskan sebagai berikut:
Ph = ρgh
dimana: Ph = Tekanan Hidrostatis (N/m2 atau Pa) >> 1 atm = 1 Pa ρ = Massa jenis (km/m3) g = Gaya gravitasi (m/s2) h = Kedalaman suatu benda dari permukaan zat cair (m) Ph = ρgh + P P = Tekanan udara luar (1 atm atau 76 cm Hg)
5. Berikan hasil-hasil simulasi parameter untuk mendukung kesimpulan yang diperoleh
Dari simulasi yang saya lakukan, terlihat grafik seperti di bawah ini, awalnya volume pada tangki 1 paling tinggi karena full tank terisi air, seiring berjalannya waktu menurun sampai konstan karena mengisi tangki 2 dan secara tidak langsung tangki 3. Untuk volume pada tangki 2, tidak terlalu banyak perubahan volume signifikan yang terjadi karena tangki 2 hanya mengaliri ataupun meneruskan volume alir dari tangki 1 ke tangki 3, volume pada tangki 2 awalnya menurun sehingga muncul teori, dengan tinggi air pada tangki 1, menyebabkan aplikasi tekanan terjadi atau meningkat, sehingga kecepatan menurun, dan seiring berjalannya waktu, tekanannya menurun diikuti kecepatan alir volume yang meningkat, sehingga tangki 2 volumenya meningkat sedikit sampai konstan. Untuk tangki 3 volumenya selalu meningkat sampai konstan karena mendapatkan laju alir fluida dari tangki 1 dan tangki 2. Berikut adalah grafik yang muncul saat setelah dilakukan simulasi. Hal-hal tersebut juga berlaku untuk ketinggian tangki karena pada hasil simulasi, angka yang dihasilkan sama antara volume dengan ketinggian air pada setiap tangki, artinya volume berbanding lurus ketinggian atau level.