Difference between revisions of "Faizal Rikaz Al Muntaqo"
Rikazfaizal (talk | contribs) (→Pertemuan 2 (18/11/20)) |
Rikazfaizal (talk | contribs) (→Pertemuan 3 (25/11/20)) |
||
Line 58: | Line 58: | ||
===Pertemuan 3 (25/11/20)=== | ===Pertemuan 3 (25/11/20)=== | ||
+ | |||
+ | "Tugas Trusses" | ||
+ | |||
+ | class Trusses_HW | ||
+ | |||
+ | parameter Integer N=8; //Global matrice = 2*points connected | ||
+ | parameter Real A=0.001; //Area m2 | ||
+ | parameter Real E=200e9; //Pa | ||
+ | Real G[N,N]; //global | ||
+ | Real Ginitial[N,N]; //global | ||
+ | Real Sol[N]; //global dispplacement | ||
+ | Real X[N]={0,0,-1035.2762,-3863.7033,0,0,-1035.2762,-3863.7033}; | ||
+ | Real R[N]; //global reaction force | ||
+ | Real SolMat[N,1]; | ||
+ | Real XMat[N,1]; | ||
+ | |||
+ | //boundary condition | ||
+ | Integer b1=1; | ||
+ | Integer b2=3; | ||
+ | |||
+ | //truss 1 | ||
+ | parameter Real X1=0; //degree between truss | ||
+ | Real k1=A*E/1; | ||
+ | Real K1[4,4]; //stiffness matrice | ||
+ | Integer p1a=1; | ||
+ | Integer p1b=2; | ||
+ | Real G1[N,N]; | ||
+ | |||
+ | //truss 2 | ||
+ | parameter Real X2=0; //degree between truss | ||
+ | Real k2=A*E/1; | ||
+ | Real K2[4,4]; //stiffness matrice | ||
+ | Integer p2a=2; | ||
+ | Integer p2b=3; | ||
+ | Real G2[N,N]; | ||
+ | |||
+ | //truss 3 | ||
+ | parameter Real X3=90; //degree between truss | ||
+ | Real k3=A*E/1.25; | ||
+ | Real K3[4,4]; //stiffness matrice | ||
+ | Integer p3a=2; | ||
+ | Integer p3b=4; | ||
+ | Real G3[N,N]; | ||
+ | |||
+ | //truss 4 | ||
+ | parameter Real X4=90+38.6598; //degree between truss | ||
+ | Real k4=A*E/1.6; | ||
+ | Real K4[4,4]; //stiffness matrice | ||
+ | Integer p4a=1; | ||
+ | Integer p4b=4; | ||
+ | Real G4[N,N]; | ||
+ | |||
+ | //truss 5 | ||
+ | parameter Real X5=90-38.6598; //degree between truss | ||
+ | Real k5=A*E/1.6; | ||
+ | Real K5[4,4]; //stiffness matrice | ||
+ | Integer p5a=3; | ||
+ | Integer p5b=4; | ||
+ | Real G5[N,N]; | ||
+ | |||
+ | /* | ||
+ | for each truss, please ensure pXa is lower then pXb (X represents truss element number) | ||
+ | */ | ||
+ | |||
+ | algorithm | ||
+ | |||
+ | //creating global matrice | ||
+ | K1:=Stiffness_Matrices(X1); | ||
+ | G1:=k1*Local_Global(K1,N,p1a,p1b); | ||
+ | |||
+ | K2:=Stiffness_Matrices(X2); | ||
+ | G2:=k2*Local_Global(K2,N,p2a,p2b); | ||
+ | |||
+ | K3:=Stiffness_Matrices(X3); | ||
+ | G3:=k3*Local_Global(K3,N,p3a,p3b); | ||
+ | |||
+ | K4:=Stiffness_Matrices(X4); | ||
+ | G4:=k4*Local_Global(K4,N,p4a,p4b); | ||
+ | |||
+ | K5:=Stiffness_Matrices(X5); | ||
+ | G5:=k5*Local_Global(K5,N,p5a,p5b); | ||
+ | |||
+ | G:=G1+G2+G3+G4+G5; | ||
+ | Ginitial:=G; | ||
+ | |||
+ | //implementing boundary condition | ||
+ | for i in 1:N loop | ||
+ | G[2*b1-1,i]:=0; | ||
+ | G[2*b1,i]:=0; | ||
+ | G[2*b2-1,i]:=0; | ||
+ | G[2*b2,i]:=0; | ||
+ | end for; | ||
+ | |||
+ | G[2*b1-1,2*b1-1]:=1; | ||
+ | G[2*b1,2*b1]:=1; | ||
+ | G[2*b2-1,2*b2-1]:=1; | ||
+ | G[2*b2,2*b2]:=1; | ||
+ | |||
+ | //solving displacement | ||
+ | Sol:=Gauss_Jordan(N,G,X); | ||
+ | |||
+ | //solving reaction force | ||
+ | SolMat:=matrix(Sol); | ||
+ | XMat:=matrix(X); | ||
+ | R:=Reaction_Trusses(N,Ginitial,SolMat,XMat); | ||
+ | |||
+ | end Trusses_HW; | ||
+ | |} |
Revision as of 14:39, 2 December 2020
Selamat Datang di laman Wiki saya!
Biodata
Nama : Faizal Rikaz Al Muntaqo
NPM : 1806201245
TTL : Jakarta, 15 Desember 1999
Hobi : Futsal
Saya adalah seorang mahasiswa Teknik Mesin UI angkatan 2018. Ketertarikan saya kepada Jurusan Teknik Mesin salah satunya didasari oleh rasa penasaran dan kesukaan saya terhadap teknologi yang terus berkembang tiap harinya dan dan juga tidak sedikit saya mendapatkan pengaruh secara tidak langsung dari ayah saya yang juga merupakan seorang Engineer. Saya sangat berharap nantinya ilmu ilmu yang telah saya dapatkan dari perkuliahan dapat diaplikasikan dikehidupan saya kedepannya dan semoga dapat berguna bagi keluarga, agama dan bangsa Indonesia.
Contents
Metode Numerik
Tujuan Pembelajaran
Tujuan pembelajaran dari mata kuliah Metode Numerik ini adalah:
- 1.Memahami konsep dan prinsip dasar dalam metode numerik (contoh:Persamaan aljabar, algorithma, dll)
- 2. Mengerti dan dapat mengaplikasikan aplikasi metode numerik
- 3. Mampu menerapkan ilmu-ilmu metode numerik dalam persoalan teknik
- 4. Mendapat nilai tambah adab sehingga dapat menjadi orang yang lebih beradab
Review Materi(Sebelum UTS)
Beberapa topik yang dibahas pada saat sebelum UTS meliputi:
- 1. Deret Taylor dan McLaurin
- 2. Regresi Linear
- 3. Interpolasi
- 4. Pseudocode
Pertemuan 1 (11/11/20)
Tugas Pertemuan 1 adalah mempelajari Modelica melalui situs Youtube lalu membuat video pembelajaran tentang Modelica kemudian di-upload di channel Youtube. Saya mempelajari Modelica melalui youtube pada situs berikut:
https://www.youtube.com/watch?v=m0Ahs8fEN28
Dan berikut merupakan Tugas video pembelajaran saya pada aplikasi modelica.
Pertemuan 2 (18/11/20)
Pada pertemuan kali ini kami sharing tugas yang telah diberikan diminggu lalu. Perbedaan Modelica dan Bahasa Coding lainnya (seperti: Phyton, dll) adalah modelica merupakan bahasa permodelan dan berbeda dengan bahasa coding sperti phyton dll. Pada proses simulate Open Modellica cukup lama karena proses dari bahasa modelica ke C lalu baru ke bahasa mesin. Namun ketika kita hanya merubah parameternya saja dengan cara me-resimulate maka proses akan cepat, karena tidak melewati proses perubahan bahasa lagi.
Mengapa menggunakan open modelica?
- - Cocok dengan engineer
- - Sistem perhitungan cepat
- - Banyak penggunanya
- - Free/ open technology
Tugas Video: https://www.youtube.com/watch?v=nVaCw_QBNaY
Pertemuan 3 (25/11/20)
"Tugas Trusses"
class Trusses_HW parameter Integer N=8; //Global matrice = 2*points connected parameter Real A=0.001; //Area m2 parameter Real E=200e9; //Pa Real G[N,N]; //global Real Ginitial[N,N]; //global Real Sol[N]; //global dispplacement Real X[N]={0,0,-1035.2762,-3863.7033,0,0,-1035.2762,-3863.7033}; Real R[N]; //global reaction force Real SolMat[N,1]; Real XMat[N,1]; //boundary condition Integer b1=1; Integer b2=3; //truss 1 parameter Real X1=0; //degree between truss Real k1=A*E/1; Real K1[4,4]; //stiffness matrice Integer p1a=1; Integer p1b=2; Real G1[N,N]; //truss 2 parameter Real X2=0; //degree between truss Real k2=A*E/1; Real K2[4,4]; //stiffness matrice Integer p2a=2; Integer p2b=3; Real G2[N,N]; //truss 3 parameter Real X3=90; //degree between truss Real k3=A*E/1.25; Real K3[4,4]; //stiffness matrice Integer p3a=2; Integer p3b=4; Real G3[N,N]; //truss 4 parameter Real X4=90+38.6598; //degree between truss Real k4=A*E/1.6; Real K4[4,4]; //stiffness matrice Integer p4a=1; Integer p4b=4; Real G4[N,N]; //truss 5 parameter Real X5=90-38.6598; //degree between truss Real k5=A*E/1.6; Real K5[4,4]; //stiffness matrice Integer p5a=3; Integer p5b=4; Real G5[N,N]; /* for each truss, please ensure pXa is lower then pXb (X represents truss element number) */ algorithm //creating global matrice K1:=Stiffness_Matrices(X1); G1:=k1*Local_Global(K1,N,p1a,p1b); K2:=Stiffness_Matrices(X2); G2:=k2*Local_Global(K2,N,p2a,p2b); K3:=Stiffness_Matrices(X3); G3:=k3*Local_Global(K3,N,p3a,p3b); K4:=Stiffness_Matrices(X4); G4:=k4*Local_Global(K4,N,p4a,p4b); K5:=Stiffness_Matrices(X5); G5:=k5*Local_Global(K5,N,p5a,p5b); G:=G1+G2+G3+G4+G5; Ginitial:=G; //implementing boundary condition for i in 1:N loop G[2*b1-1,i]:=0; G[2*b1,i]:=0; G[2*b2-1,i]:=0; G[2*b2,i]:=0; end for; G[2*b1-1,2*b1-1]:=1; G[2*b1,2*b1]:=1; G[2*b2-1,2*b2-1]:=1; G[2*b2,2*b2]:=1; //solving displacement Sol:=Gauss_Jordan(N,G,X); //solving reaction force SolMat:=matrix(Sol); XMat:=matrix(X); R:=Reaction_Trusses(N,Ginitial,SolMat,XMat); end Trusses_HW;
|}