Difference between revisions of "Metnum03-Farhan Aditya Wibowo"

From ccitonlinewiki
Jump to: navigation, search
(Pertemuan 3 ( 23 November 2020))
(Pertemuan 3 example 2.1(23 November 2020))
Line 45: Line 45:
 
Setelah kelas, Pak Dai memberikan tugas untuk menyelesaikan soal berikut:
 
Setelah kelas, Pak Dai memberikan tugas untuk menyelesaikan soal berikut:
  
[[File:Tugasmetnumbowo6.png]]
+
[[File:Tugasmetnumbowo16.png]]
  
 
Untuk menyelesaikan soal ini perlu dilakukan pengelompokan menjadi node dan elemen seperti pada tabel berikut:
 
Untuk menyelesaikan soal ini perlu dilakukan pengelompokan menjadi node dan elemen seperti pada tabel berikut:
  
[[File:Tugasmetnumbowo7.png]]
+
[[File:Tugasmetnumbowo17.png]]
  
 
lalu perlu dilakukan perhitungan nilai kekakuan pada elemen. Untuk elemen 1,3,5, dan 6 nilai kekakuannya adalah 4,22 x 10^5 lb/in. sedangkan untuk elemen 2, dan 4 nilai kekakuannya adalah 2,98 x 10^5 lb/in.
 
lalu perlu dilakukan perhitungan nilai kekakuan pada elemen. Untuk elemen 1,3,5, dan 6 nilai kekakuannya adalah 4,22 x 10^5 lb/in. sedangkan untuk elemen 2, dan 4 nilai kekakuannya adalah 2,98 x 10^5 lb/in.
Line 55: Line 55:
 
setelah itu perlu dilakukan analisis kekakuan pada tiap elemen dalam matriks koordinat global, kemudian dijumlahkan untuk mendapatkan K global. berikut adalah hasil penjumlahan dari nilai kekakuan tiap elemen:
 
setelah itu perlu dilakukan analisis kekakuan pada tiap elemen dalam matriks koordinat global, kemudian dijumlahkan untuk mendapatkan K global. berikut adalah hasil penjumlahan dari nilai kekakuan tiap elemen:
  
[[File:Tugasmetnumbowo8.png]]
+
[[File:Tugasmetnumbowo18.png]]
  
 
disederhanakan menjadi
 
disederhanakan menjadi

Revision as of 12:06, 30 November 2020

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيم

dengan ini saya mengisi halaman ini untuk memenuhi mata kuliah metode numerik

Bio Data

Nama  : Farhan Aditya Wibowo

NPM  : 1706024665

Program Studi : S1 Teknik Mesin Parallel

Pertemuan 1 (19 November 2020)

Pada kesempatan pertemuan sebelumnya kelas kami diberikan fasilitas untuk berdiskusi untuk membahas hal apa saja yang telah didapat dari kelas metode numerik dan pengaplikasian dari yang telah didapat, dari situ saya meraskan bahwa pada kehidupan sehari-hari kitapun harus ada suatu target seperti layaknya kita mengerjakan metode numerik dengan target tugas selesai dan mengerti apa yang di beri tahu oleh orang yang lebih berpengalaman dalam bidang tersebut. Lalu selanjutnya kami membahas tentang konsep tak hingga yang sebenarnya bukan bilangan, melainkan hanya sebuah konsep dibuat manusia karena manusia memiliki batasan dan hanya maha penciptalah yang tahu akan tak hingga tersebut. Pada sesi selanjutnya kami diberi informasi bahwa pemberian materi akan berupa perangkat lunak Open Modelica. Open Modelica merupakan penyimulasi sistem dengan data input kode untuk melakukan suatu penelitian terhadap sistem tersebut.

Pertemuan 2 (16 November 2020)

Membuat suatu program untuk menyelesaikan persamaan aljabar simultan, berikut merupakan program yang saya buat: Screen Shot 2020-11-29 at 18.18.27.png

Dengan metode gauss elimination dan function solve yang disediakan oleh software modelica, saya mendapatkan hasil seperti berikut :

Tugasmetnumbowo2.png

Pertemuan 3 ( 23 November 2020)

Pada pertemuan ini kami membuktikan studi dari buku Numerical Methods for Engineers 7th Edition

Tugasmetnumbowo3.png

dari soal diketahui matriks [K][X]=[W]

komponen [K] dan [W] diketahui, lalu mencari komponen [X]

Pada Open Modelica saya menggunakan metode Gauss Elimination karena pada cara manual kita seharusnya mencari variable dari Matrik K dan W.

Tugasmetnumbowo4.png

dengan begitu ini hasil dari yang saya kerjakan

Tugasmetnumbowo5.png

Pertemuan 3 example 2.1(23 November 2020)

Di pertemuan hari ini, Pak Dai menjelaskan tentang aplikasi metode numerik untuk permasalahan-permasalahan teknik. Salah satunya adalah permasalahan sistem pegas-massa.

Setelah kelas, Pak Dai memberikan tugas untuk menyelesaikan soal berikut:

Tugasmetnumbowo16.png

Untuk menyelesaikan soal ini perlu dilakukan pengelompokan menjadi node dan elemen seperti pada tabel berikut:

Tugasmetnumbowo17.png

lalu perlu dilakukan perhitungan nilai kekakuan pada elemen. Untuk elemen 1,3,5, dan 6 nilai kekakuannya adalah 4,22 x 10^5 lb/in. sedangkan untuk elemen 2, dan 4 nilai kekakuannya adalah 2,98 x 10^5 lb/in.

setelah itu perlu dilakukan analisis kekakuan pada tiap elemen dalam matriks koordinat global, kemudian dijumlahkan untuk mendapatkan K global. berikut adalah hasil penjumlahan dari nilai kekakuan tiap elemen:

Tugasmetnumbowo18.png

disederhanakan menjadi

Tugasmetnumbowo9.png

setelah mendapat matriks kekakuan, diterapkan kondisi batas dan beban. Untuk node 1 dan 3 adalah fixed, maka U1X=0, U1Y=0, U3X=0, U3Y=0 dan beban diberikan pada node 4 dan 5 sebesar F4Y= -500lb dan F5Y= -500lb

dengan menggunakan Hukum Hooke yaitu F=k.x, maka didapatkan persamaan defleksi menjadi

Tugasmetnumbowo10.png

Persamaan diatas kemudian diselesaikan dengan OpenModelica, berikut saya lampirkan coding yang saya buat

Tugasmetnumbowo11.png

setelah melakukan pengecekan dan simulasi, saya melakukan plotting. berikut hasil plotting simulasi tersebut.

Tugasmetnumbowo12.png

hasil dapat dilihat pada panel di bagian kanan bawah gambar.


Untuk mendapatkan gaya reaksi, persamaannya adalah:

{R}=[K].{U}-{F}

diterapkan matriks-matriks yang sudah diketahui, didapat:

Tugasmetnumbowo13.png

Persamaan diatas dapat diselesaikan oleh openmodelica. berikut adalah coding yang saya buat

Tugasmetnumbowo14.png

hasil simulasi tersebut di plot sebagai berikut:

Tugasmetnumbowo15.png

nilai R tiap node dapat dilihat di bagian kanan bawah gambar