Difference between revisions of "Metnum03-Anbia Maulana"
Anbiamaulana (talk | contribs) (→Pertemuan 1) |
Anbiamaulana (talk | contribs) (→Pertemuan 1: 9 November 2020) |
||
Line 18: | Line 18: | ||
PR Mengenai Pemahaman Metode Numerik | PR Mengenai Pemahaman Metode Numerik | ||
+ | |||
+ | Metode Numerik merupakan mata kuliah di Semester 5. | ||
+ | Metode numerik merupakan teknik penyelesaian permsalahan yang diformulasikan secara matematis dengan menggunakan operasi hitungan (aritmatik) yaitu operasi tambah, kurang, kali, dan bagi. Metode ini digunakan karena banyak permasalahan matematis tidak dapat diselesaikan menggunakan metode analitik. Jikapun terdapat penyelesaiannya secara analitik, proses penyelesaiaannya sering kali cukup rumit dan memakan banyak waktu sehingga tidak efisien. | ||
+ | |||
+ | Terdapat keuntungan dan kerugian terkait penggunaan metode numerik. Keuntungan dari metode ini antara lain: | ||
+ | |||
+ | 1. Solusi persoalan selalu dapat diperoleh. | ||
+ | 2. Dengan bantuan komputer, perhitungan dapat dilakukan dengan cepat serta hasil yang diperoleh dapat dibuat sedekat mungkin dengan nilai sesungguhnya. | ||
+ | Tampilan hasil perhitungan dapat disimulasikan. | ||
+ | |||
+ | |||
+ | '''Tahapan Penyelesaian Menggunakan Metode Numerik | ||
+ | ''' | ||
+ | |||
+ | Terdapat beberapa tahapan dalam menyelesaikan suatu permasalahan dengan metode numerik. Tahapan-tahapan tersebut antara lain: | ||
+ | |||
+ | Pemodelan | ||
+ | Persoalan dunia nyata dimodelkan ke dalam persamaan matematika. Persamaan matematika yang terbentuk dapat berupa persamaan linier, non-linier, dan sebagainya sesuai dengan persoalan yang dihadapi. | ||
+ | |||
+ | Penyederhanaan Model | ||
+ | Model matematika yang dihasilkan dari tahap 1 mungkin saja terlalu kompleks. Semakin kompleks suatu model, semakin rumit penyelesaiaannya, sehingga model perlu disederhanakan. | ||
+ | |||
+ | Seberapa sederhana model yang akan kita buat? tergantung pada permasalahan apa yang hendak pembaca selesaikan. Model yang terlalu sederhana akan tidak cocok digunakan untuk digunakan sebagai pendekatan sistem nyata atau lingkungan yang begitu kompleks. Penyederhanaan dapat berupa asumsi sejumlah variabel yang terlibat tidak signifikan, atau asumsi kondisi reaktor (steady atau non-steady). | ||
+ | |||
+ | Formulasi Numerik | ||
+ | Setelah model matematika sederhana diperoleh, tahap selanjutnya adalah memformulasikan model matematika secara numerik. Tahapan ini terdiri atas: + menentukan metode numerik yang akan dipakai bersama-sama dengan analisis galat (error) awal. + menyusun algoritma dari metode numerik yang dipilih. | ||
+ | |||
+ | Sejauh ini yang telah saya pelajari sebelum UTS mencakup 3 materi besar yaitu mencari akar-akar, regresi linier, dan turunan numerik. | ||
+ | |||
+ | 1. Mencari Akar-Akar | ||
+ | |||
+ | Persamaan non-linier dapat diartikan sebagai persamaan yang tidak mengandung syarat seperti persamaan linier, sehingga persamaan non-linier dapat merupakan Beberapa metode yang saya pelajari adalah metode pencarian akar menggunakan Closed methods (Bracketing Method) dan Open Methods. | ||
+ | |||
+ | |||
+ | Close method | ||
+ | |||
+ | Metode tertutup disebut juga metode bracketing. Disebut sebagai metode tertutup karena dalam pencarian akar-akar persamaan non-linier dilakukan dalam suatu selang [x,y] | ||
+ | merupakan metode untuk mencari akar-akar dengan dan tingkat error untuk mengetahui seberapa besar error saat iteration | ||
+ | |||
+ | Metode yang saya pelajari ada 3 yaitu Graphical Methods, Bisection Methods, dan False-Position Methods. | ||
+ | |||
+ | - Graphical Methods | ||
+ | |||
+ | Sebuah metode sederhana yang menggunakan grafik untuk memperkirakan akar-akar suatu fungsi. Metode ini dilakukan dengan melakukan plotting dari suatu fungsi ke dalam bentuk grafik. | ||
+ | |||
+ | - Bisection Methods | ||
+ | |||
+ | Metode ini merupakan salah satu jenis metode incremental search method yang menggunakan batas atas dan batas bawah untuk mempersempit area pencarian akar-akar. | ||
+ | |||
+ | - False-Position Methods | ||
+ | |||
+ | Metode ini sangat mirip dengan metode Bisection. Hal yang membedakan metode False-Position dengan Bisection adalah penentuan titik tengah dari batas-batas yang ditentukan. Penentuan titik tengah dari False-Position Method menggunakan persamaan berikut. | ||
+ | |||
+ | Open Method | ||
+ | |||
+ | Metode Open Methods merupakan metode pencarian yang hanya menggunakan 1 titik untuk menemukan akar-akar. Metode ini dapat menggunakan turunan suatu fungsi untuk menentukan titik pengujian baru yang semakin dekat dengan nilai akar-akar yang diinginakn. Metode yang saya pelajari ada 3 yaitu Fixed-Point Iteration, Newton-Rapshon, dan Secant Method | ||
+ | |||
+ | - Fixed-Point Iteration | ||
+ | Metode ini disebut juga metode iterasi sederhana, adalah metode yang memisahkan x dengan sebagian x yang lain sehingga diperoleh: x=g(x) | ||
+ | |||
+ | - Newton-Raphson | ||
+ | |||
+ | Metode ini menggunakan satu titik awal dan mendekatinya dengan memperhatikan slope atau gradien pada titik tersebut. Slop atau gradien didapatkan dengan melakukan turunan dari fungsi tersebut. Persamaan untuk Newton-Raphson adalah sebagai berikut: | ||
+ | |||
+ | - Secant Method | ||
+ | |||
+ | Metode ini merupakan metode modifikasi Newton-Raphson dimana metode Newton-Raphson tidak digunakan (karena f'(x) sulit ditemukan atau tidak mungkin ditemukan). Persaman untuk metode Secant adalah sebagai berikut | ||
+ | |||
+ | 2. Regresi Linier | ||
+ | |||
+ | regresi linear adalah sebuah pendekatan untuk memodelkan hubungan antara variable terikat Y dan satu atau lebih variable bebas yang disebut X. Salah satu kegunaan dari regresi linear adalah untuk melakukan prediksi berdasarkan data-data yang telah dimiliki sebelumnya. Hubungan di antara variable-variabel tersebut disebut sebagai model regresi linear. | ||
+ | |||
+ | Persamaan umum Regresi Linier adalah sebagai berikut: | ||
+ | |||
+ | dimana: | ||
+ | |||
+ | 3. Turunan Numerik | ||
+ | |||
+ | Turunan Numerik adalah menentukan hampiran nilai turunan fungsi f yang diberikan dalam bentuk tabel. Terdapat 3 pendekatan dalam menghitung turunan numerik: |
Revision as of 07:36, 15 November 2020
Pertemuan Metode Numerik 03
Pendahuluan
بِسْمِ اللهِ الرَّحْمَنِ الرَّحِيْمِ
السَّلاَمُ عَلَيْكُمْ وَرَحْمَةُ اللهِ وَبَرَكَاتُهُ
Nama : Anbia Maulana Pujiantoro
NPM: 1806181842
Pertemuan 1: 9 November 2020
PR Mengenai Pemahaman Metode Numerik
Metode Numerik merupakan mata kuliah di Semester 5. Metode numerik merupakan teknik penyelesaian permsalahan yang diformulasikan secara matematis dengan menggunakan operasi hitungan (aritmatik) yaitu operasi tambah, kurang, kali, dan bagi. Metode ini digunakan karena banyak permasalahan matematis tidak dapat diselesaikan menggunakan metode analitik. Jikapun terdapat penyelesaiannya secara analitik, proses penyelesaiaannya sering kali cukup rumit dan memakan banyak waktu sehingga tidak efisien.
Terdapat keuntungan dan kerugian terkait penggunaan metode numerik. Keuntungan dari metode ini antara lain:
1. Solusi persoalan selalu dapat diperoleh. 2. Dengan bantuan komputer, perhitungan dapat dilakukan dengan cepat serta hasil yang diperoleh dapat dibuat sedekat mungkin dengan nilai sesungguhnya. Tampilan hasil perhitungan dapat disimulasikan.
Tahapan Penyelesaian Menggunakan Metode Numerik
Terdapat beberapa tahapan dalam menyelesaikan suatu permasalahan dengan metode numerik. Tahapan-tahapan tersebut antara lain:
Pemodelan Persoalan dunia nyata dimodelkan ke dalam persamaan matematika. Persamaan matematika yang terbentuk dapat berupa persamaan linier, non-linier, dan sebagainya sesuai dengan persoalan yang dihadapi.
Penyederhanaan Model Model matematika yang dihasilkan dari tahap 1 mungkin saja terlalu kompleks. Semakin kompleks suatu model, semakin rumit penyelesaiaannya, sehingga model perlu disederhanakan.
Seberapa sederhana model yang akan kita buat? tergantung pada permasalahan apa yang hendak pembaca selesaikan. Model yang terlalu sederhana akan tidak cocok digunakan untuk digunakan sebagai pendekatan sistem nyata atau lingkungan yang begitu kompleks. Penyederhanaan dapat berupa asumsi sejumlah variabel yang terlibat tidak signifikan, atau asumsi kondisi reaktor (steady atau non-steady).
Formulasi Numerik Setelah model matematika sederhana diperoleh, tahap selanjutnya adalah memformulasikan model matematika secara numerik. Tahapan ini terdiri atas: + menentukan metode numerik yang akan dipakai bersama-sama dengan analisis galat (error) awal. + menyusun algoritma dari metode numerik yang dipilih.
Sejauh ini yang telah saya pelajari sebelum UTS mencakup 3 materi besar yaitu mencari akar-akar, regresi linier, dan turunan numerik.
1. Mencari Akar-Akar
Persamaan non-linier dapat diartikan sebagai persamaan yang tidak mengandung syarat seperti persamaan linier, sehingga persamaan non-linier dapat merupakan Beberapa metode yang saya pelajari adalah metode pencarian akar menggunakan Closed methods (Bracketing Method) dan Open Methods.
Close method
Metode tertutup disebut juga metode bracketing. Disebut sebagai metode tertutup karena dalam pencarian akar-akar persamaan non-linier dilakukan dalam suatu selang [x,y] merupakan metode untuk mencari akar-akar dengan dan tingkat error untuk mengetahui seberapa besar error saat iteration
Metode yang saya pelajari ada 3 yaitu Graphical Methods, Bisection Methods, dan False-Position Methods.
- Graphical Methods
Sebuah metode sederhana yang menggunakan grafik untuk memperkirakan akar-akar suatu fungsi. Metode ini dilakukan dengan melakukan plotting dari suatu fungsi ke dalam bentuk grafik.
- Bisection Methods
Metode ini merupakan salah satu jenis metode incremental search method yang menggunakan batas atas dan batas bawah untuk mempersempit area pencarian akar-akar.
- False-Position Methods
Metode ini sangat mirip dengan metode Bisection. Hal yang membedakan metode False-Position dengan Bisection adalah penentuan titik tengah dari batas-batas yang ditentukan. Penentuan titik tengah dari False-Position Method menggunakan persamaan berikut.
Open Method
Metode Open Methods merupakan metode pencarian yang hanya menggunakan 1 titik untuk menemukan akar-akar. Metode ini dapat menggunakan turunan suatu fungsi untuk menentukan titik pengujian baru yang semakin dekat dengan nilai akar-akar yang diinginakn. Metode yang saya pelajari ada 3 yaitu Fixed-Point Iteration, Newton-Rapshon, dan Secant Method
- Fixed-Point Iteration Metode ini disebut juga metode iterasi sederhana, adalah metode yang memisahkan x dengan sebagian x yang lain sehingga diperoleh: x=g(x)
- Newton-Raphson
Metode ini menggunakan satu titik awal dan mendekatinya dengan memperhatikan slope atau gradien pada titik tersebut. Slop atau gradien didapatkan dengan melakukan turunan dari fungsi tersebut. Persamaan untuk Newton-Raphson adalah sebagai berikut:
- Secant Method
Metode ini merupakan metode modifikasi Newton-Raphson dimana metode Newton-Raphson tidak digunakan (karena f'(x) sulit ditemukan atau tidak mungkin ditemukan). Persaman untuk metode Secant adalah sebagai berikut
2. Regresi Linier
regresi linear adalah sebuah pendekatan untuk memodelkan hubungan antara variable terikat Y dan satu atau lebih variable bebas yang disebut X. Salah satu kegunaan dari regresi linear adalah untuk melakukan prediksi berdasarkan data-data yang telah dimiliki sebelumnya. Hubungan di antara variable-variabel tersebut disebut sebagai model regresi linear.
Persamaan umum Regresi Linier adalah sebagai berikut:
dimana:
3. Turunan Numerik
Turunan Numerik adalah menentukan hampiran nilai turunan fungsi f yang diberikan dalam bentuk tabel. Terdapat 3 pendekatan dalam menghitung turunan numerik: