Difference between revisions of "User:Anbiamaulana"
Anbiamaulana (talk | contribs) |
Anbiamaulana (talk | contribs) |
||
Line 179: | Line 179: | ||
Jika pada soal no 6 friction factor yang digunakan menggunakan rumus friction factor aliran laminar nilainya akan jauh lebih kecil jika dibanding menggunakan friction factor aliran turbulen ( 0.179 kPa disbanding dengan 1076 kPa) . Oleh karena itu jika aliran bisa dipertahankan pada kondisi laminar, ini akan sangat menguntungkan meskipun hal ini sulit untuk dilakukan. | Jika pada soal no 6 friction factor yang digunakan menggunakan rumus friction factor aliran laminar nilainya akan jauh lebih kecil jika dibanding menggunakan friction factor aliran turbulen ( 0.179 kPa disbanding dengan 1076 kPa) . Oleh karena itu jika aliran bisa dipertahankan pada kondisi laminar, ini akan sangat menguntungkan meskipun hal ini sulit untuk dilakukan. | ||
+ | |||
+ | == Pertemuan Mekanika Fluida 6 : 15 April 2020 == | ||
+ | |||
+ | Pada pertemuan kali ini pak DAI memberikan penjelasan tetntang losses. | ||
+ | |||
+ | [[Losses dibagi menjadi menjadi 2 yaitu mayor dan minor, tetatapi pada pertemuan kali ini hanya memfokuskan kepada minor losses. Minor losses adalah losses atau kerugian yang terjadi pada suatu aliran yang disebabkan oleh kehilangan energi dari fluida tersebut disebabkan karena perubahan ben kolaborasi kelas tuk lokasi saluran (fitting pipa). Kemudian pak DAI memberikan PR untuk kolaborasi kelas dan setiap mahasiswa menganalisa secondary flow yang terjadi pada salah satu fitting pipa menggunakana software CFDSOF.]] | ||
+ | |||
+ | Berikut adalah hasil simulasi yang saya lakukan pada sudden diffuser berukuran 2" x 4" dengan panjang total 200 mm atau 0.2 m | ||
+ | |||
+ | Slice 1 dilakukan pada jarak 0.03 m | ||
+ | |||
+ | |||
+ | [[File:604px-PO Slice 0.3.jpg|400px|thumb|center]] | ||
+ | |||
+ | |||
+ | Slice 2 dilakukan pada jarak perbedaan diameter difusser yaitu 0.1 m | ||
+ | |||
+ | |||
+ | [[File:PO Slice 0.1.jpg|400px|thumb|center]] | ||
+ | |||
+ | |||
+ | Slice 3 dilakukan pada jarak 0.19 m | ||
+ | |||
+ | |||
+ | [[File:PO Slice01.jpg|400px|thumb|center]] | ||
+ | |||
+ | tekanan disetiap slice tersebut | ||
+ | |||
+ | |||
+ | [[File:800px-P drop data.png|400px|thumb|center]] |
Revision as of 13:51, 28 April 2020
Contents
BIODATA DIRI
Nama : Anbia Maulana Pujiantoro
NPM : 1806181842
Fakultas/Jurusan : Teknik/Teknik Mesin
Pertemuan Mekanika Fluida 1 : 31 Maret 2020
Bahasan materi mata kuliah hari ini adalah aliran viskositas dan simulasi aliran tersebut dari software CFD. Aliran viskositas hari ini dipaparkan persamaan dan definisi dari aliran viskositas sendiri yaitu rasio perbandingan antara gaya intensitas dan gaya viskos.
Aplikasi CFD-SOF yaitu Aplikasi yang berguna untuk melakukan simulasi fluida.
aplikasi CFD-SOF ini dari awal dengan mencontohkan suatu kasus yaitu simulasi aliran laminar 2D dengan mengaplikasikan aliran viscous.
Bang Edo memberikan materi dan pengenalan terhadap aplikasi CFDSOF ini secara efektif dan jelas. Fungsi share screen yang merupakan salah satu fasilitas di aplikasi Zoom pun dimanfaatkan dengan baik sehingga saya pun bisa mengikuti arahan Bang Edo dengan baik. Dan saya dapat menyimpulkan bahwa, CFDSOF merupakan software simulasi analisis rekayasa berbasis Computational Fluid Dynamics (CFD). Dalam simulasi dibuat geometri yang berbentuk box dan ukuran dimensi yang menggunakan sumbu x,y,z. Simulasi tersebut terbagi atas penentuan base mesh, generate mesh, check mesh, simulation model, fluid properties, dan boundary condition dan di akhir simulasi menekan tombol pada solver. Berikut beberapa gambar yang bisa saya ambil ketika saya mencoba aplikasi CFDSOF dengan arahan Bang Edo:
Tahap selanjutnya yaitu dengan menggunakan aplikasi parallel dari CFDSOF untuk penentuan nilai p pada area geometri, dimana pada hasil simulasi terdapat sebaran area yang berubah dari besar ke kecil. Area Inlet mendapat pressure terbesar dan berangsur mengecil sampai outlet. Berikut gambarnya :
Grafik dari hasil simulasi dengan hubungan momentum residual vs waktu, dengan 110 iterasi yang dihasilkan. Run time dibuat dengan 1000 unit. Berikut gambarnya :
Dalam simulasi dibuat geometri berbentuk box dan ukuran dimensi yang menggunakan sumbu x,y,z. Simulasi tersebut terbagi atas penentuan base mesh, generate mesh, check mesh, simulation model, fluid properties , dan boundary condition.
Lalu diberikan pertanyaan sebagai berikut
1. Apa itu entrance region/aliran masuk?
Bagian aliran dalam pipa di mana bidang kuantitas variabel mendasar (kecepatan, suhu atau konsentrasi) tergantung pada kondisi di pintu masuk dan di mana lapisan batas meningkat hingga mengisi seluruh bagian melintang pipa.
2. Apa itu fully developed flow/aliran berkembang sempurna? Aliran yang berkembang sempurna terjadi ketika efek viskos akibat tegangan geser antara partikel fluida dan dinding pipa menciptakan profil kecepatan yang berkembang sepenuhnya. Agar hal ini terjadi, fluida harus berjalan melalui pipa lurus. Selain itu, kecepatan fluida untuk aliran yang berkembang penuh akan berada pada titik tercepat di garis tengah pipa (persamaan 1 aliran laminar)
3. Apa itu entrance length? panjang saluran yang dibutuhkan untuk mencapai kecepatan maksimum bagian penampang 99% dari besaran yang dikembangkan sepenuhnya ketika aliran yang masuk seragam. Panjang pintu masuk hidrodinamik juga disebut sebagai panjang pengendapan
4. Apa pengaruh viskositas? dan pengaruh pressure drop dalam pipa?
jarak yang dilalui aliran setelah memasuki pipa sebelum aliran mengalami proses sebelumnya
5. Bagaimana cara menghitung pressure drop suatu aliran dalam laminar/turbulen?
Pertemua Rabu, 1 April 2020
Pada pertemuan ini Pak Dai menjelaskan tentang 3 Hukum Konservasi yang mana terdiri dari Massa, Mommentum, dan Energi.
Lalu penjelasan perbedaan Pendekatan Sistem (Lagrange) dan Control Volum (Euler). Penjelasan tentang Preassure Drop, yang mana perumusan untuk mencari pressure drop adalah Tekanan total yang masuk dikurangi dengan tekanan total yang keluar.
Ptot=Ps+Pd
Pd=1/2 ρv^2
Kemudian dilakukan pengulangan tentang langkah langkan membuat CFDSOF 2D oleh Bang Edo untuk memperbaiki bentuk grafik kecepatan.
Diberikan latihan soal dengan penyelesaiaan menggunakan CFDSOF:
Hasil dari pemecahan masalah menggunakan CFDSOF terdiri dari Grafik dan perbandingan kecepatan dari beberapa titik.
Hasil pemecahan masalah untuk Soal a1 dan b1 yang mana dengan kecepata 0,01 m/s dan dynamik viskos 4x10^-5
Hasil untuk soal a2 dengan keceparan 0,01 m/s dan dynamik viskos 10^-5
Hasil untuk soal b2 dengan kecepatan 0,04 m/s dan dynamik viskos 4x10^-5
Dari hasil simulasi CFDSOF yang disupport oleh software paraview pada point b bagian 1 dan 2, perubahan kecepatan pada entrance region lebih besar jika dibandingkan dengan perubahan kecepatan setelah entrance region yang mana perubahan kecepatan jauh lebih kecil. Hal ini menguatkan teori bahwa perhitungan kecepatan pada daerah entrance region jauh lebih kompleks daripada perubahan kecepatan pada fully developed region yang mana perubahan kecepatan sangat kecil sehingga perhitungannya pun jauh lebih simpel.
Pada poin a dan b, seiring dengan perubahan kecepatan pada entrance region, parameter lain yang berubah adalah tekanan dinamik dikarenakan hubungan tekanan dinamik dan kecepatan adalah sebagai berikut :
Dengan μ dan V berturut-turut adalah viskositas dinamik dan kecepatan. Hal ini menyebabkan tekanan dinamik cenderung lebih konstan ketika berada pada fully developed region dikarenakan perubahan kecepatan pada daerah tersebut sangat kecil, namun sebaliknya tekanan dinamik cenderung mengalami perubahan yang cukup besar ketika berada pada entrance region.
Pertemuan Mekanika Fluida 5 : 14 April 2020
Pada pertemuan ini pak Dai memberikan quiz untuk membuat sebuah artikel untuk setiap soal di wikipage. Artikel-artikelnya adalah sebagai berikut :
Soal No 1 Kecepatan Aliran Laminar Arah Sumbu X Pada Plat Parallel Didalam mempelajari mekanika fluida kita mempelajari 3 hukum dasar yaitu Hukum konservasi energi Hukum konservasi massa Hukum konservasi momentum Pada persoalan no 1 digunakan hukum konservasi momentum dengan menggunakan persamaan x – momentum. Hal ini dikarenakan kecepatan yang akan dicari hanya terfokus ke arah sumbu x. Dengan asumsi kecepatan arah y disetiap titik dianggap nol dan dengan boundary condition u = 0 pada saat H/2 dan ∂u/∂y = 0 pada saat y = 0 didapatkan nilai u ̅ = H^2/12μ x ∆p/l
Soal No 2
Pengaruh Entrance Length Terhadap Kecepatan Aliran Laminer Pada Plat Parallel
Aliran diantara pelat parallel terdapat beberapa jenis, satah satunya adalah aliran laminar. Aliran laminar adalah aliran yang teratur tidak berpotongan satu sama lain dengan kecepatan yang rendah dengan nilai bilangan Reynold dibawah 2100. Untuk menentukan jenis aliran dapat ditentukan dengan menentukan nilai bilangan reynoldnya dengan persamaan
Re=(ρ*V*D)/μ
Jika kecepatan dari aliran tersebut ditinjau searah sumbu X nilainya tergantung kepada jarak titik tertentu dari inlet pipa. Mulai inlet hingga memasuki entrance region kecepatan aliran tersebut akan berubah, sedangkan ketika aliran memasuki entrance region kecepatanya akan konstan. Posisi entrance region dapat ditentukan dengan menghitung jarak entrance length dengan persamaan
Le=0.06*Re*D
Sedangkan jika ditinjau searah sumbu Y nilai kecepatan nya tergantung kepada jarak suatu titik dari dinding pipa yang diakibatkan tegangan geser aliran tersebut. Semakin jauh titik tersebut dari dinding pipa makan kecepatan nya juga akan semakin besar karena di dinding pipa terdapat tegangan geser sehingga menyebabkan kecepatan pada dinding pipa sama dengan nol. Sehingga jika dilihat profil kecepatan nya akan terbentuk sebagai berikut.
Dapat dilihat dari grafik nilai Le=1.5H. Kececepatan pada posisi L = 0.5H dan L = H lebih kecil dibandingkan kecepatan aliran pada saat L = Le. Sedangkan kecepatan pada L = 6H nilainya sama dengan kecepatan pada L = Le karena posisi tersebut sudah masuk kedalam entrance region.
Soal No 3
Kecepatan Aliran Turbulen
Aliran turbulen adalah aliran yang partikel partikel nya bergerak secara acak, saling berpotongan dengan kecepatan yang tidak stabil di setiap titik nya. Cara untuk menghitung kecepatan aliran turbulen tidak bisa disamakan dengan cara menghitung kecepatan aliran laminar. Jika aliran laminar kita hanya perlu menghitung kecepatan rata rata u ̅ nya saja dan dianggap semua titik memiliki kecepatan yang sama dengan kecepatan rata rata. Sedangkan untuk aliran turbulen kita harus mencari kecepatan rata rata u ̅ dan kecepatan fluktuasi di titik tertentu u’.
Sehingga ketika ingin menentukan kecepatan di titik A persamaan nya menjadi
u total A = u ̅ A + u’A
Nilai kecepatan pada aliran turbulen jauh lebih besar jika dibandingkan dengan dengan kecepatan aliran laminar. Hal ini dikarenakan gaya inersia nya besa, bisa dilihat dari bilangan Reynold nya yang lebih besar dari 4200 (Re= gaya inersia / gaya friksi). Besarnya kecepatan pada aliran turbulen menyebabkan energi kinetiknya juga semakin besar yang nantinya akan menyebabkan sublapisan viskos semakin tebal.
Soal No 4
Pressure Drop Pada Aliran Laminar
Pressure drop adalah istilah yang digunakan untuk menggambarkan penurunan tekanan di suatu titik terhadap titik awal. Hal ini bisa terjadi karena adanya gaya gesek pada aliran yang terdapat pada daerah dinding pipa. Pressure drop pada aliran laminar besarnya berbanding lurus dengan viskositas aliran, panjang lintasan pipa yang dilewati aliran, dan debit aliran tersebut dan berbanding terbalik dengan pangkat empat diameter pipa yang dilewati aliran. Jika dibuat ke dalam persamaan akan menjadi sebagai berikut
∆p=p1-p2= 128μlQ/(πD^4 )
Soal No 5
Pressure Drop Pada Aliran Turbulen
Aliran turbulen didalam sebuah pipa terdapat suatu lapisan yang dinamakan sublapis viskos. Sublapisan viskos ini lah yang nantinya akan menimbulkan pressure drop. Sublapisan viskos besarnya di tentukan oleh besarnya besarnya viskositas dan tegangan geser pada dinding pipa. Tegangan geser pada aliran turbulen nilainya jauh lebih besar dibanding tegangan geser aliran laminar. Semakin besar viskositas suatu aliran dan tegangan geser pada permukaan pipa maka semakin besar pula sub lapisan viskos nya. Inilah hal yang nantinya akan membuat pressure drop pada aliran turbulen akan semakin besar.
Soal No 6
Perbandingan Pressure Drop Aliran Laminar dan Aliran Turbulen
Perhitungan pressure drop pada aliran turbulen dan aliran laminar dapat digunakan dengan cara menentukan friction factor. Untuk aliran laminar nilai friction factornya adalalah f= 64/Re. Sedangkan untuk aliran turbulen nilai friction factornya dapat dilihat dalam diagram moody menentukan nilai Re dan perbandingan antara kekasaran ekuivalen terhadap diameter pipa (ε/D).
Jika pada soal no 6 friction factor yang digunakan menggunakan rumus friction factor aliran laminar nilainya akan jauh lebih kecil jika dibanding menggunakan friction factor aliran turbulen ( 0.179 kPa disbanding dengan 1076 kPa) . Oleh karena itu jika aliran bisa dipertahankan pada kondisi laminar, ini akan sangat menguntungkan meskipun hal ini sulit untuk dilakukan.
Pertemuan Mekanika Fluida 6 : 15 April 2020
Pada pertemuan kali ini pak DAI memberikan penjelasan tetntang losses.
[[Losses dibagi menjadi menjadi 2 yaitu mayor dan minor, tetatapi pada pertemuan kali ini hanya memfokuskan kepada minor losses. Minor losses adalah losses atau kerugian yang terjadi pada suatu aliran yang disebabkan oleh kehilangan energi dari fluida tersebut disebabkan karena perubahan ben kolaborasi kelas tuk lokasi saluran (fitting pipa). Kemudian pak DAI memberikan PR untuk kolaborasi kelas dan setiap mahasiswa menganalisa secondary flow yang terjadi pada salah satu fitting pipa menggunakana software CFDSOF.]]
Berikut adalah hasil simulasi yang saya lakukan pada sudden diffuser berukuran 2" x 4" dengan panjang total 200 mm atau 0.2 m
Slice 1 dilakukan pada jarak 0.03 m
Slice 2 dilakukan pada jarak perbedaan diameter difusser yaitu 0.1 m
Slice 3 dilakukan pada jarak 0.19 m
tekanan disetiap slice tersebut