Difference between revisions of "Christian Emanuel Kefi"
Line 170: | Line 170: | ||
Aliran didaerah yang paling dekat dengan dinding dinamakan, ''Viscous sublayer'', laminar ''shear stress''lebih dominan. didaerah yang mendekati ''centre line'' tegangan geser turbolen lebih dominan. pada aliran turbolen semakin intensif aliran turbolennya semakin besar energi gesekannya. | Aliran didaerah yang paling dekat dengan dinding dinamakan, ''Viscous sublayer'', laminar ''shear stress''lebih dominan. didaerah yang mendekati ''centre line'' tegangan geser turbolen lebih dominan. pada aliran turbolen semakin intensif aliran turbolennya semakin besar energi gesekannya. | ||
+ | |||
+ | == Pertemuan 5 : Selasa, 14 April 2020 == | ||
+ | |||
+ | Pada pertemua kali ini diadakan kuis pertama pada putaran 2. Kuis membahas tentang 6 nomor semuanya mengenai property aliran pada aliran laminar dan aliran turbolen. hasil dari kuis ini berupa artikel yang di upload pada wikipage. | ||
+ | |||
+ | 1. ''Analytical solution of laminar flow through the parallel- plate'' | ||
+ | pada teori laminar time (t) tidak diperhitungkan karena tidak ada perubahan terhadap waktu. | ||
+ | |||
+ | |||
+ | [[File:artikel21.3 .jpg|left|200px|thumb|]] Rumus ini didapatkan dengan cara mengintegralkan rumus konservasi momentum diatas, dimana velocity u haya memiliki fungsi bergantung pada y dan pada teori laminar time (t) tidak diperhitungkan karena tidak ada perubahan terhadap waktu. Untuk mencari C1 dan C2 ditentukan menggunakan boundary condition dimana : | ||
+ | |||
+ | u = 0 ; pada y=H/2 atau centreline (no slip) : tidak ada slip. Kecepatan 0 terhadap dinding. | ||
+ | |||
+ | Dp/dx = 0 ; pada y=0 (symmetry) : gerak fluida tidak fluktuatif. | ||
+ | |||
+ | • Um = kecepatan rata-rata ; q = flowrate, flowrate memiliki hubungan dengan pressure drop dimana jika pressure drop besar berarti flowrate juga besar. | ||
+ | |||
+ | 2. Peranan property terhadap aliran laminar untuk mencapai keadaan berkembang sempurna | ||
+ | |||
+ | Pada aliran laminar peranan viskos lebih berpengaruh daripada peranan density. Seperti contohnya pada persamaan Re= inertia force / friction force maka dapat dikatakan semakin besar bilangan Reyold maka semakin besar inersia dan semakin kecil viskos nya. Pada aliran yang bersifat inviscid atau aliran pada enterance region viskos dapat diabaikan. sementara pada keadaan aliran fully development peranan gaya viskos lebih berpengaruh. | ||
+ | |||
+ | Sama halnya dengan inersia, efek viskos juga memiliki peranan penting dalam panjang enterance region. cairan yang lebih encer lebih lambat mencapai keadaan aliran berkembang sempurna karena cairan yang lebih encer memiliki viskositas yang kecil dan menyebabkan nilai Re semakin besar yang berpengaruh pada bertambahnya nilai le. | ||
+ | |||
+ | 3. Kondisi pada aliran turbolen | ||
+ | |||
+ | Tegangan geser pada aliran turbolen merupakan fungsi dari ''density''. dalam aliran turbolen terdapat viscous sublayer yang merupakan aliran tipis pada aliran turbolen yang merupakan aliran laminar yang terletak pada dinding. Maka untuk mendapatkan ketebalan ''viscous sublayer'' maka digunakan tegangan geser dinding dan juga density karena pada aliran turbolen density sangat berpengaruh. Pada umumnya aliran turbolen memiliki bilangan reynold (Re) diatas 4000 karena memiliki kecepatan aliran yang lebihh tinggi daripada aliran laminar pada keadaan ''fully developed'' | ||
+ | |||
+ | 4. membahas contoh soal 8.2 | ||
+ | |||
+ | a. Untuk soal a mencari pressure drop. hal yang mempengaruhi pressure drop adalah viskos, Panjang dinding, debit, dan diameter. Semakin panjang pipa maka semakin besar pressure dropnya. | ||
+ | |||
+ | b. Mencari sudut untuk mengurangi pressure drop. tetapi hasil kenyataan tidak memungkinkan karena hasil sinnya tidak diantara 1 dan -1. Sehingga diameter dibesarkan agar memungkinkan. Jika pressure drop sudah sama dengan 0 pada posisi puncak, pada saat itu terjadi perubahan potensial energi yang jatuh dari puncak menjadi energi yang hilang karena viscous dissipation. Setelah mendapatkan besar sudut, perbedaan ketinggian pipa Δz bisa didapatkan dengan mengalikan pangjang pipa dan sin θ. Dengan Δz perubahan tekanan dapat dicari dengan rumus Δp = ρgΔz , dan bisa dibandingkan dengan perhitungan pada hasil di (a). | ||
+ | |||
+ | c. Jika pada soal (b) kondisi pressure drop sama dengan 0, maka p1 = p3 = 200 kPa. Sementara l tidak berpengaruh karena pressure drop sudah tidak ada. | ||
+ | |||
+ | 5. viscous sublayer dan pressure drop | ||
+ | |||
+ | a. Mencari viscous sublayer: menggunakan rumus perbandingan friction velocity (u*) dan kecepatan aliran . untuk mendapatkan friction velocity terlebih dahulu tegangan geser pada wall. Wall shear stress (τw) berbanding lurus dengan pressure drop sehingga semakin tinggi pressue drop maka semakin rendah viscous sublayernya. | ||
+ | |||
+ | b. Mencari velocity pada centerline dengan cara mencari V = Q/A . Setelah itu mencari bilangan reynoldnya. Setelah itu mencari Vc, dalam mencari Vc ditemukan nilai n=8,4 ini dapat dilihat pada table grafik 8.17 yang terdapat pada buku munson. | ||
+ | |||
+ | c. Rasio tubolen dan laminar shear stress pada point ditengah- tengah centreline dan dinding pipa. Cukup mencari tegangan geser laminar dan tegangan geser total. Tegangan geser turbolen tidak dicari karena sangat rumit. | ||
+ | |||
+ | 6. Perbandingan presure drop pada aliran turbolen dan aliran laminar | ||
+ | |||
+ | Perbedaan pertama terdapat pada rumus yang digunakan untuk mencari ''pressure drop'' jika di di aliran laminar melibatkan efek viskos makan pada aliran turbolen menggunakan density. | ||
+ | |||
+ | perbedaan kedua terletak pada rumus yang digunakan untuk mencari ''friction factor''. pada aliran turbolen melibatkan kekasaran permukaan. | ||
+ | |||
+ | == Pertemuan 6 : Rabu, 15 April 2020 == |
Revision as of 15:14, 22 April 2020
Contents
BIODATA DIRI
Nama :Christian Emanuel Kefi
NPM :1906435460
Pendidikan terakhir : Diploma III
Pertemuan Mekanika Fluida-02
Pertemuan 1 : Selasa, 31 maret 2020
Pertemuan pertama setelah UTS ini menggunakan software Zoom untuk melakukan proses pembelajaran. Proses pembelajaran ini dipandu oleh Bang Edo Syafei sebagai asisten dosen Mekanik Fluida.
Pertemuan pertama ini membahas tentang materi Aliran Viskos dalam pipa dan simulasi menggunakan CFD-SOF.
Bilangan Reynolds
Bilangan Reynolds, yaitu perbandingan antara gaya inersia fluida (gaya badan fluid) terhadap gaya viskosnya (gaya geseknya).
dengan rumus yang diberikan :
dimana,
v = kecepatan [m/s]
D = Diameter [m]
ρ = Density
µ = Viskositas dinamik
u = Viskositas kinematik
Bilangan Reynolds dapat menentukan jenis aliran fluida. Berikut ini adalah contoh aliran yang berada pada pipa. Ada 3 Jenis aliran fluida, yaitu :
1) Aliran Laminar = aliran yang memiliki bilangan Reynold (Re) kurang dari 2100. Sehingga aliran laminar memenuhi hukum viskositas Newton yaitu :
τ = µ du/dy
2) Aliran Transien = aliran peralihan dari aliran laminar ke aliran turbulen.Memiliki Re: 2100-4000
3) Aliran Transien = Aliran dimana pergerakan dari partikel – partikel fluida sangat acarak dan tidak beraturan karena mengalami percampuran serta putaran partikel antar lapisan, yang mengakibatkan saling tukar momentum dari satu bagian fluida kebagian fluida yang lain dalam skala yang besar. Dalam keadaan aliran turbulen maka turbulensi yang terjadi membangkitkan tegangan geser yang merata diseluruh fluida sehingga menghasilkan kerugian – kerugian aliran. Pada Aliran ini biasanya memiliki Re > 4000
Tutorial dalam menggunakan simulasi CFD-SOF sebagai berikut :
Simulasi CFD-SOF
Tahap pertama, membuat box pada sumbu x,y,z dan mengatur base mesh, generate mesh, check mesh, simulation model, fluid properties , dan boundary condition.
tahap selanjutnya adalah penentuan nilai p, dimana hasil menunjukan pada ujung inlet yang dekat dengan dinding menunjukan p aling tinggi dan pada bagian outlet menunjukan p paling rendah. seperti yang ditunjukan gambar berikut :
Grafik dari hasil simulasi dengan hubungan momentum residual vs waktu, dengan 65 iterasi yang dihasilkan. Run time dibuat dengan 1000 unit.
kemudian didapatkan hasil nilai U pada software paraview, hasil yang menunjukan kecepatan akan merata ketika sudah mencapai keadaan aliran berkembang sempurna
Pertanyaan:
1. Apa pengaruh viskositas dan pengaruh pressure drop dalam pipa?
Pressure drop adalah penurunan tekanan fluida akibat gesekan fluida pada dinding pipa. sementara viskositas berpengaruh pada gesekan pada pipa.
2. Apa yang dimaksud dengan entrance region?
Suatu wilayah atau daerah yang berada didekat dengan tempat masuknya fluida ke pipa. Atau bagian awal dari suatu empat aliran yang masuk dari suatu sumber. Contohnya Furnace
3. Jelaskan apa yang dimaksud entrance length?
panjang suatu aliran dari awal masuk pipa hingga mencapai kondisi dimana fully developed flow atau aliran yang berkembang sempurna.
4. Apa itu fully developed flow?
kondisi dimana profil kecepatan fluida akan menjadi tetap besarnya.
Pertemuan 2 : Rabu, 1 April 2020
Pada pertemuan kedua membahas tentang teori yang harus dipahami dalam pengaplikasian mekanika fluida. yaitu : konservasi masa, konservasi energi, dan konservasi momentum.
kemudian dibahas juga tentang enterance region, fully developed flow, dan pressure drop yang merupakan penurunan tekanan karena adanya gaya gesek dari fluida.
kemudian diberikan soal latihan :
a.1) Pada point a bagian 1 berdasarkan data-data yang ada dengan inlet velocity adalah 0,01 m/s dengan viskositas dinamik 0,00004 kg/m.s diperoleh Reynold numbers sebesar 30 dan entrance length adalah 0,18 m. Kemudian titik searah sumbu x yang digunakan untuk mengetahui perubahan kecepatan yang diperoleh adalah 0,01 m, 0,18 m(entrance length), 0,5 m dan 0,9 m dan Berikut adalah hasil grafik kecepatan dan tekanan yang diperoleh :
a.2) Pada point a bagian 2 berdasarkan data-data yang ada dengan inlet velocity adalah 0,01 m/s dengan viskositas dinamik 0,00001 kg/m.s diperoleh Reynold numbers sebesar 120 dan entrance length adalah 0,72 m. Kemudian titik searah sumbu x yang digunakan untuk mengetahui perubahan kecepatan yang diperoleh adalah 0,01 m, 0,72 m(entrance length), dan 0,95 m Berikut adalah hasil grafik kecepatan dan tekanan yang diperoleh :
Dari hasil simulasi CFDSOF yang disupport oleh software paraview pada point a bagian 1 dan 2, perubahan kecepatan pada entrance region lebih besar jika dibandingkan dengan perubahan kecepatan setelah entrance region yang mana perubahan kecepatan jauh lebih kecil. Hal ini menguatkan teori bahwa perhitungan kecepatan pada daerah entrance region jauh lebih kompleks daripada perubahan kecepatan pada fully developed region yang mana perubahan kecepatan sangat kecil sehingga perhitungannya pun jauh lebih simpel.
Kemudian grafik tekanan dan kecepatan yang menggambarkan pengaruh viskositas pada suatu aliran fluida pada poin a adalah sebagai berikut :
b.1) untuk kasus ini sama dengan kasus pada a point 1
b.2) Pada point b bagian 2 berdasarkan data-data yang ada dengan inlet velocity adalah 0,04 m/s dengan viskositas dinamik 0,00004 kg/m.s diperoleh Reynold numbers sebesar 120 dan entrance length adalah 0,72 m. Kemudian titik searah sumbu x yang digunakan untuk mengetahui perubahan kecepatan yang diperoleh adalah 0,01 m, 0,72 m(entrance length), dan 0,95 m Berikut adalah hasil grafik kecepatan dan tekanan yang diperoleh :
Dari hasil simulasi CFDSOF yang disupport oleh software paraview pada point b bagian 1 dan 2, perubahan kecepatan pada entrance region lebih besar jika dibandingkan dengan perubahan kecepatan setelah entrance region yang mana perubahan kecepatan jauh lebih kecil. Hal ini menguatkan teori bahwa perhitungan kecepatan pada daerah entrance region jauh lebih kompleks daripada perubahan kecepatan pada fully developed region yang mana perubahan kecepatan sangat kecil sehingga perhitungannya pun jauh lebih simpel.
Kemudian grafik tekanan dan kecepatan yang menggambarkan pengaruh viskositas pada suatu aliran fluida pada poin b adalah sebagai berikut :
Pertemuan 3 : Selasa, 7 April 2020
Pada pertemuan kali ini membahas tentang goverment equation, merupakan persamaan yang mengatur perilaku fluida. Seperti contohnya pada persamaan Re= inertia force / friction force maka dapat dikatakan semakin besar bilangan Reyold maka semakin besar inersia dan semakin kecil viskos nya. Pada aliran yang bersifat inviscid atau aliran pada enterance region viskos dapat diabaikan. sementara pada keadaan aliran fully development peranan gaya viskos lebih berpengaruh.
Peranan inersia penting dalam penentuan panjang enterance length. Semakin rendah inersia makan semakin mudah mencapai keadaan aliran erkembang sempurna. hal itu disebabkan karena inersia berbanding lurus dengan Reynold number sehingga jika dimasukkan dalam rumus (le = 0.06*Re*D) nilai le semakin kecil juga dan menyebabkan aliran semakin cepat mencapai aliran berkembang sempurna.
Sama halnya dengan inersia, efek viskos juga memiliki peranan penting dalam panjang enterance region. cairan yang lebih encer lebih lambat mencapai keadaan aliran berkembang sempurna karena cairan yang lebih encer memiliki viskositas yang kecil dan menyebabkan nilai Re semakin besar yang berpengaruh pada bertambahnya nilai le.
setelah itu dijelaskan tentang governing equation, persamaan yang mengatur tentang prilaku fluida, persamaan tersebut sebagai berikut :
(Governor Eq yang sudah disederhanakan untuk kasus aliran dua dimensi, steady flow, incompressible flow. Tidak ada perubahan massa jenis, kecepatan pada setiap titik, dan tidak ada aliran yang memotong tegak lurus.)
Pada aliran kita meninjau tiga gaya, yaitu : Gaya inersia, Gaya tekanan, dan Gaya gesekan.
Pertemuan 4 : Rabu, 8 April 2020
Pada pertemuan kali ini membahas tentang hubungan lapisan aliran fluida terhadap Reynold number. Jika menggunakan persamaan Re = inersia force/friction force, maka didapatkan bahwa semakin besar inersia maka semakin besar juga Rynold number yang didapatkan, sehingga semakin lama untuk mencapai keadaan fully development. Berkebalikan dengan itu, semakin besar viskositas maka semakin kecil bilangan Reynold dan semakin cepat mencapai keadaan aliran berkembang sempurna. dan hubungannya dengan jenis- jenis aliran adalah sebagai berikut :
-Laminar = Memiliki lapisan fluida berlapis-lapis yang tersusun secara parallel dan tidak bertabrakan satu sama lain (tidak terjadi perpotongan antar lapisan fluida).
-Transisi = Memiliki bentuk lapisan menyerupai osilasi dan terkadang terdapat perpotongan antar lapisan fluida akbat ketidakstabilan aliran. Aliran ini merupakan pembatas antara aliran laminar dan aliran turbolen.
-Turbolen = Terjadi ketidakteraturan pada aliran lapisan fluida yang mengakibatkan terjadi perpotongan antar lapisan.
Hubungan antara Reynold number (Re) dengan jenis aliran adalah, jika menggunakan fluida yang sama kecepatan aliran pada aliran turbolen akan lebih cepat dibandingkan dengan aliran laminar karena Reynold number pada aliran turbolen lebih besar. Pengaruh lain jenis aliran adalah gaya gesek pada turbolen lebih kecil karena viskos tidak terlalu berpengaruh karena peranannya dibanding dengan inersia, sehingga mengakibatkan Reynold number semakin besar.
Gambar disamping point (a) menunjukan bagaimana kondisi kecepatan aliran disuatu titik dalam satuan waktu pada aliran laminar. Kecepatan pada aliran laminar disuatu titik tidak mengalami perubahan magnitude terhadap waktu dan arah. Pada point (b) menunjukan bagaimana kondisi kecepatan aliran disuatu titik dalam satuan waktu pada aliran turbolen. Dalam aliran turbolen kecepatan berfluktuasi secara cepat atau rapid.ada 3 komponen yang mempengarugi velocity yaitu tekanan, gaya gesek, dan temperatur. Dalam aliran turbolen kecepatan berfluktuasi secara cepat dan acak terhadap waktu hal ini menyebabkan kerumitan dalam menyelesaikan persoalan secara analistik. Kecepatan pada aliran turbolen sangat bergantung pada tegangan geser. Untuk menemukan tegangan geser diperlukan besar gesekan yang terjadi pada fluida dan dinding, untuk mendapatkan besar gesekan terlebih dahulu harus mengetahui distribusi perubahan kecepatan, karena itu kita harus mempertimbangkan gesekan untuk mengetahui tegangan gesernya. Untuk mendapatkan tegangan geser harus mendapatkan keceatan lokal atau kecepatan sesaat (Va) terlebih dahulu. Kecepatan lokal memiliki rumus, Va= Vbar + V' , dimana Vbar adalah kecepatan rata-rata dan V' adalah kecepatan fluktuasi.
Dimana interval waktu, T, jauh lebih lama dari periode fluktuasi terpanjang, tetapi jauh lebih pendek dari ketidakstabilan kecepatan rata-rata.
tegangan geser dalam aliran turbulen tidak hanya sebanding dengan gradien dari kecepatan rata-rata waktu. itu juga mengandung kontribusi karena acak fluktuasi komponen kecepatan x dan y. Kepadatan terlibat karena momentum transfer cairan dalam pusaran acak (eddies). Meskipun besarnya relatif dibandingkan tegangan geser laminar ke tegangan geser turbolen adalah fungsi kompleks tergantung pada aliran spesifik yang terlibat.
Aliran didaerah yang paling dekat dengan dinding dinamakan, Viscous sublayer, laminar shear stresslebih dominan. didaerah yang mendekati centre line tegangan geser turbolen lebih dominan. pada aliran turbolen semakin intensif aliran turbolennya semakin besar energi gesekannya.
Pertemuan 5 : Selasa, 14 April 2020
Pada pertemua kali ini diadakan kuis pertama pada putaran 2. Kuis membahas tentang 6 nomor semuanya mengenai property aliran pada aliran laminar dan aliran turbolen. hasil dari kuis ini berupa artikel yang di upload pada wikipage.
1. Analytical solution of laminar flow through the parallel- plate pada teori laminar time (t) tidak diperhitungkan karena tidak ada perubahan terhadap waktu.
u = 0 ; pada y=H/2 atau centreline (no slip) : tidak ada slip. Kecepatan 0 terhadap dinding.
Dp/dx = 0 ; pada y=0 (symmetry) : gerak fluida tidak fluktuatif.
• Um = kecepatan rata-rata ; q = flowrate, flowrate memiliki hubungan dengan pressure drop dimana jika pressure drop besar berarti flowrate juga besar.
2. Peranan property terhadap aliran laminar untuk mencapai keadaan berkembang sempurna
Pada aliran laminar peranan viskos lebih berpengaruh daripada peranan density. Seperti contohnya pada persamaan Re= inertia force / friction force maka dapat dikatakan semakin besar bilangan Reyold maka semakin besar inersia dan semakin kecil viskos nya. Pada aliran yang bersifat inviscid atau aliran pada enterance region viskos dapat diabaikan. sementara pada keadaan aliran fully development peranan gaya viskos lebih berpengaruh.
Sama halnya dengan inersia, efek viskos juga memiliki peranan penting dalam panjang enterance region. cairan yang lebih encer lebih lambat mencapai keadaan aliran berkembang sempurna karena cairan yang lebih encer memiliki viskositas yang kecil dan menyebabkan nilai Re semakin besar yang berpengaruh pada bertambahnya nilai le.
3. Kondisi pada aliran turbolen
Tegangan geser pada aliran turbolen merupakan fungsi dari density. dalam aliran turbolen terdapat viscous sublayer yang merupakan aliran tipis pada aliran turbolen yang merupakan aliran laminar yang terletak pada dinding. Maka untuk mendapatkan ketebalan viscous sublayer maka digunakan tegangan geser dinding dan juga density karena pada aliran turbolen density sangat berpengaruh. Pada umumnya aliran turbolen memiliki bilangan reynold (Re) diatas 4000 karena memiliki kecepatan aliran yang lebihh tinggi daripada aliran laminar pada keadaan fully developed
4. membahas contoh soal 8.2
a. Untuk soal a mencari pressure drop. hal yang mempengaruhi pressure drop adalah viskos, Panjang dinding, debit, dan diameter. Semakin panjang pipa maka semakin besar pressure dropnya.
b. Mencari sudut untuk mengurangi pressure drop. tetapi hasil kenyataan tidak memungkinkan karena hasil sinnya tidak diantara 1 dan -1. Sehingga diameter dibesarkan agar memungkinkan. Jika pressure drop sudah sama dengan 0 pada posisi puncak, pada saat itu terjadi perubahan potensial energi yang jatuh dari puncak menjadi energi yang hilang karena viscous dissipation. Setelah mendapatkan besar sudut, perbedaan ketinggian pipa Δz bisa didapatkan dengan mengalikan pangjang pipa dan sin θ. Dengan Δz perubahan tekanan dapat dicari dengan rumus Δp = ρgΔz , dan bisa dibandingkan dengan perhitungan pada hasil di (a).
c. Jika pada soal (b) kondisi pressure drop sama dengan 0, maka p1 = p3 = 200 kPa. Sementara l tidak berpengaruh karena pressure drop sudah tidak ada.
5. viscous sublayer dan pressure drop
a. Mencari viscous sublayer: menggunakan rumus perbandingan friction velocity (u*) dan kecepatan aliran . untuk mendapatkan friction velocity terlebih dahulu tegangan geser pada wall. Wall shear stress (τw) berbanding lurus dengan pressure drop sehingga semakin tinggi pressue drop maka semakin rendah viscous sublayernya.
b. Mencari velocity pada centerline dengan cara mencari V = Q/A . Setelah itu mencari bilangan reynoldnya. Setelah itu mencari Vc, dalam mencari Vc ditemukan nilai n=8,4 ini dapat dilihat pada table grafik 8.17 yang terdapat pada buku munson.
c. Rasio tubolen dan laminar shear stress pada point ditengah- tengah centreline dan dinding pipa. Cukup mencari tegangan geser laminar dan tegangan geser total. Tegangan geser turbolen tidak dicari karena sangat rumit.
6. Perbandingan presure drop pada aliran turbolen dan aliran laminar
Perbedaan pertama terdapat pada rumus yang digunakan untuk mencari pressure drop jika di di aliran laminar melibatkan efek viskos makan pada aliran turbolen menggunakan density.
perbedaan kedua terletak pada rumus yang digunakan untuk mencari friction factor. pada aliran turbolen melibatkan kekasaran permukaan.