Difference between revisions of "Oscillating one-dimensional systems"

From ccitonlinewiki
Jump to: navigation, search
(4.3.1 Penurunan Model yang Sederhana)
(4.3.1 Penurunan Model yang Sederhana)
Line 80: Line 80:
 
==== 4.3.1 Penurunan Model yang Sederhana ====
 
==== 4.3.1 Penurunan Model yang Sederhana ====
  
[[File:Sketch of One Dimensional.PNG|530px|thumb|left|alt text]]Banyak sistem keteknikan (''engineering'') berkaitan dengan osilasi, dan persamaan diferensial merupakan kunci utama untuk memahami, memprediksi, dan mengontrol osilasi. Kita mulai dengan model paling sederhana yang berkaitan dengan dinamika penting dari sistem osilasi. suatu benda dengan massa m melekat/dikaitkan pada pegas dan bergerak sepanjang garis tanpa gesekan, lihat Gambar 4.15 untuk sketsa (''rolling wheels'' menunjukkan “tidak ada gesekan”). Ketika pegas diregangkan (atau dikompresi), gaya pegas menarik (atau mendorong) bodi (penampang m) kembali dan bekerja "melawan" gerakan. Lebih tepatnya, misalkan x (t) adalah posisi bodi pada sumbu x, dimana bodi bergerak. Pegas tidak direntangkan ketika x= 0, sehingga gaya adalah nol, dan x= 0 karenanya posisi keseimbangan bodi. Gaya pegas adalah -kx, dimana k adalah konstanta yang diukur. Kami berasumsi bahwa tidak ada gaya lain (mis., Tidak ada gesekan). Hukum Newton ke-2 F=ma kemudian memiliki F=-kx dan a=x ̈ ,
+
[[File:Sketch of One Dimensional.PNG|400px|thumb|left|alt text]]Banyak sistem keteknikan (''engineering'') berkaitan dengan osilasi, dan persamaan diferensial merupakan kunci utama untuk memahami, memprediksi, dan mengontrol osilasi. Kita mulai dengan model paling sederhana yang berkaitan dengan dinamika penting dari sistem osilasi. suatu benda dengan massa m melekat/dikaitkan pada pegas dan bergerak sepanjang garis tanpa gesekan, lihat Gambar 4.15 di samping untuk sketsa (''rolling wheels'' menunjukkan “tidak ada gesekan”). Ketika pegas diregangkan (atau dikompresi), gaya pegas menarik (atau mendorong) bodi (penampang m) kembali dan bekerja "melawan" gerakan. Lebih tepatnya, misalkan x (t) adalah posisi bodi pada sumbu x, dimana bodi bergerak. Pegas tidak direntangkan ketika x= 0, sehingga gaya adalah nol, dan x= 0 karenanya posisi keseimbangan bodi. Gaya pegas adalah -kx, dimana k adalah konstanta yang diukur. Kami berasumsi bahwa tidak ada gaya lain (mis., Tidak ada gesekan). Hukum Newton ke-2 F=ma kemudian memiliki F=-kx dan a=x ̈ ,
 +
[[File:Az 4.41.png]]
 +
 
 +
yang dapat ditulis ulang sebagai:
 +
 
 +
[[File:Az 4.42.png]]
 +
 
 +
dengan memperkenalkan ω=√(k/m)  (yang sangat umum).
 +
 
 +
Persamaan (4.42) adalah persamaan diferensial orde kedua, dan oleh karena itu kita memerlukan dua kondisi awal, satu pada posisi x(0) dan satu pada kecepatan x’(0). Di sini kita memilih bodi untuk berhenti, tetapi menjauh dari posisi setimbang:
 +
 
 +
[[File:Az 4.42a.png]]
  
[[File:Az 4.41.png]]
+
Solusi tepat untuk Pers. (4.42) dengan kondisi awal ini adalah x(t)=X0 cosωT. Ini dapat dengan mudah diverifikasi dengan mensubsitusikan ke Pers. (4.42) dan memeriksa kondisi awal. Solusinya mengatakan bahwa sistem massa pegas berosilasi bolak-balik seperti yang dijelaskan oleh kurva kosinus.
 +
 
 +
Persamaan diferensial (4.42) muncul dalam banyak konteks lainnya. Contoh klasik adalah pendulum sederhana yang berosilasi bolak-balik. Buku-buku fisika berasal, dari hukum gerak kedua Newton, itu diperoleh:
 +
 
 +
[[File:Az 4.42b.png]]
 +
 
 +
dimana m adalah massa bodi di ujung pendulum dengan panjang L, g adalah percepatan gravitasi, dan ϴ merupakan sudut yang dibuat pendulum dengan vertikal. Mempertimbangkan sudut kecil ϴ, sin ϴ ≈ ϴ, dan kita dapatkan Pers. (4.42) dengan x = ϴ, ω=√(g/L) , x(0)=Θ, dan x’(0)=0, jika Θ merupakan sudut awal dan pendulum diam di t=0.
  
 
====4.3,13 Metode finite diference; damping linier====
 
====4.3,13 Metode finite diference; damping linier====

Revision as of 15:02, 10 April 2020

Studi kasus dan Terjemahan

1d oscillating dynamic system 1.png

1d oscillating dynamic system 2.png

1d oscillating dynamic system 3.png

1d oscillating dynamic system 4.png

1d oscillating dynamic system 5.png

1d oscillating dynamic system 6.png

1d oscillating dynamic system 7.png

1d oscillating dynamic system 8.png

1d oscillating dynamic system 9.png

1d oscillating dynamic system 10.png

1d oscillating dynamic system 11.png

1d oscillating dynamic system 12.png

1d oscillating dynamic system 13.png

1d oscillating dynamic system 14.png

1d oscillating dynamic system 15.png

1d oscillating dynamic system 16.png

1d oscillating dynamic system 17.png

1d oscillating dynamic system 18.png

1d oscillating dynamic system 19.png

1d oscillating dynamic system 20.png

1d oscillating dynamic system 21.png

1d oscillating dynamic system 22.png

1d oscillating dynamic system 23.png

1d oscillating dynamic system 24.png

1d oscillating dynamic system 25.png

1d oscillating dynamic system 26.png

1d oscillating dynamic system 27.png

1d oscillating dynamic system 28.png

1d oscillating dynamic system 29.png

1d oscillating dynamic system 30.png

1d oscillating dynamic system 31.png

1d oscillating dynamic system 32.png

1d oscillating dynamic system 33.png

1d oscillating dynamic system 34.png

1d oscillating dynamic system 35.png

Ref. Linge S, Langtangen HP, Programming for Computations - A Gentle Introduction to Numerical Simulations with Python

Terjemahan

4.3.1 Penurunan Model yang Sederhana

alt text
Banyak sistem keteknikan (engineering) berkaitan dengan osilasi, dan persamaan diferensial merupakan kunci utama untuk memahami, memprediksi, dan mengontrol osilasi. Kita mulai dengan model paling sederhana yang berkaitan dengan dinamika penting dari sistem osilasi. suatu benda dengan massa m melekat/dikaitkan pada pegas dan bergerak sepanjang garis tanpa gesekan, lihat Gambar 4.15 di samping untuk sketsa (rolling wheels menunjukkan “tidak ada gesekan”). Ketika pegas diregangkan (atau dikompresi), gaya pegas menarik (atau mendorong) bodi (penampang m) kembali dan bekerja "melawan" gerakan. Lebih tepatnya, misalkan x (t) adalah posisi bodi pada sumbu x, dimana bodi bergerak. Pegas tidak direntangkan ketika x= 0, sehingga gaya adalah nol, dan x= 0 karenanya posisi keseimbangan bodi. Gaya pegas adalah -kx, dimana k adalah konstanta yang diukur. Kami berasumsi bahwa tidak ada gaya lain (mis., Tidak ada gesekan). Hukum Newton ke-2 F=ma kemudian memiliki F=-kx dan a=x ̈ ,

Az 4.41.png

yang dapat ditulis ulang sebagai:

Az 4.42.png

dengan memperkenalkan ω=√(k/m)   (yang sangat umum).

Persamaan (4.42) adalah persamaan diferensial orde kedua, dan oleh karena itu kita memerlukan dua kondisi awal, satu pada posisi x(0) dan satu pada kecepatan x’(0). Di sini kita memilih bodi untuk berhenti, tetapi menjauh dari posisi setimbang:

Az 4.42a.png

Solusi tepat untuk Pers. (4.42) dengan kondisi awal ini adalah x(t)=X0 cosωT. Ini dapat dengan mudah diverifikasi dengan mensubsitusikan ke Pers. (4.42) dan memeriksa kondisi awal. Solusinya mengatakan bahwa sistem massa pegas berosilasi bolak-balik seperti yang dijelaskan oleh kurva kosinus.

Persamaan diferensial (4.42) muncul dalam banyak konteks lainnya. Contoh klasik adalah pendulum sederhana yang berosilasi bolak-balik. Buku-buku fisika berasal, dari hukum gerak kedua Newton, itu diperoleh:

Az 4.42b.png

dimana m adalah massa bodi di ujung pendulum dengan panjang L, g adalah percepatan gravitasi, dan ϴ merupakan sudut yang dibuat pendulum dengan vertikal. Mempertimbangkan sudut kecil ϴ, sin ϴ ≈ ϴ, dan kita dapatkan Pers. (4.42) dengan x = ϴ, ω=√(g/L) , x(0)=Θ, dan x’(0)=0, jika Θ merupakan sudut awal dan pendulum diam di t=0.

4.3,13 Metode finite diference; damping linier

Sebuah isu kunci adalah bagaimana untuk mengkonferensi skema dari daerah 4.3.12 ke persamaan diferensial dengan lebih banyak istilah. Kita mulai dengan kasus linear penempatan f (u') = bu', kemungkinan gaya per nonlinear s(u), dan sebuah gaya excitation F(t):


mu "+ bu '+ s (u) = F (t), u(0) = Uo, u'(0) = 0 ,t € (0, T) (4.79)


Kita harus cari perkiraan perbedaan yang tepat untuk u' di dalam bu'. Sebuah pilihan yang baik adalah perbedaan berpusat 2,4 t Sampling persamaan pada titik t,,


mu"(t, + bu'(t, ) + s(u") = F(t.,), (4.80)


dan memasukkan perkiraan perbedaan finete pada u" dan u / hasil dalam m- 2u "+ u " -1 412 24t s (u") = F" (4.81)


dimana F" adalah notasi pendek untuk F(t). Persamaan (4.81) adalah linear dalam u " +1 tak diketahui kita dapat dengan mudah memecahkan untuk kuantitas ini: b - (2mu "+(- At-M)un-1442(F"--s(u")))) (m+ - At) 1. (4.82)

Artikel 1 Hasil diskusi : judul ..

Artikel 2 Hasil diskusi : judul ..=

Artikel .... Hasil diskusi  : judul ...