Difference between revisions of "Harry Purnama"

From ccitonlinewiki
Jump to: navigation, search
Line 244: Line 244:
 
[[File:Kebutuhan Energi2.jpg]]
 
[[File:Kebutuhan Energi2.jpg]]
 
   
 
   
 +
[[File:Kebutuhan Energi3.jpg|1000px]]
 +
 +
  
 
=='''Referensi'''==
 
=='''Referensi'''==
 
<references/>
 
<references/>

Revision as of 14:59, 8 March 2020


Harry Purnama.jpg

Profil

Nama  : Harry Purnama

NPM  : 1806155301

Jurusan  : Teknik Mesin – Perancangan Dan Manufaktur

Email  : harry.purnama81@ui.ac.id/hrrypn@gmail.com

Dosen  : Dr. Ahmad Indra Siswantara (Pak DAI)


Komputasi Teknik – Pertemuan I (3 Februari 2020)

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيم

1. Pengertian Komputasi Teknik

Komputasi teknik adalah sebuah metode atau teknik algoritma yang digunakan untuk membantu memecahkan permasalahan matematis, sehingga dapat mengefisienkan waktu serta biaya dalam pemecahan permasalahan tersebut. Beberapa istilah dalam komputasi teknik adalah

  1. Iterasi: teknik pengulangan pada solusi numerik untuk menyelesaikan sistem persamaan, salah satu contoh teknik iterasi yang paling banyak digunakan adalah Newton-Raphson iterative method [1]
  2. Eror: deviasi dari sebuah akurasi atau correctness.[2]
  3. konvergensi: gagasan bahwa urutan transformasi yang berbeda sampai pada suatu kesimpulan dalam jumlah waktu yang terbatas (transformasi itu berakhir), dan bahwa kesimpulan yang dicapai tidak tergantung pada jalan yang diambil untuk sampai ke sana (mereka konfluen).[3]


1. Tujuan Pembelajaran Komputasi Teknik

Tujuan pembelajaran Komputasi Teknik adalah

  1. Memahami konsep dan prinsip dalam komputasi teknik (eror, konvergen, verifikasi, validasi, metode, dll).
  2. Mampu menerapkan pemahaman komputasi teknik dalam permasalahan dalam permesinan.
  3. Sebagai sarana mengenal diri

1. Kemampuan Dalam Komputasi Teknik

Pembelajaran komputasi teknik yang saya lakukan masih pada dasar ditambah pembelajaran teori metode numerik yang saya terima sewaktu kuliah S1. Untuk detil penggunaan perangkat lunak bantu menggunakan Computer Aided Design (CAD) dan simulasi namun belum pada detil antara teori-teori yang digunakan untuk simulasi.


Komputasi Teknik – Pertemuan II (10 Februari 2020)

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيم

Pada pertemuan kedua telah diajarkan beberapa hal yaitu

  1. Analisa (Kesepakatan kelas): Suatu proses penyeidikan yang memuat sejumlah kegiatan untuk memecahkan masalah dengan dikaji sebaik-baiknya menggunakan pemikan yang terstruktur.
  2. Analisa (Pak DAI): Suatu proses untuk menghasilkan langkah-langkah solusi/suatu prosedur pemecahan masalah.
  3. Metode-metode dalam komputasi: Jika sesuatu random maka menggunakan statik (stokastik), sedangkan jika sesuatu itu berpola maka menggunakan deterministik.

1. Sinopsis Tugas Akhir

Tugas Akhir Saya berjudul "Analisa Pembebanan Dynamometer Untuk Proses Pemotongan Logam Pada Mesin Bubut Dengan Finite Element Method" Membuat pemodelan struktur utama dynamometer pemotongan logam pada mesin bubut dengan menggunakan software ANSYS Workbench 11.0, untuk menganalisa perilaku statik struktur dynamometer dengan mengetahui tegangan dan regangannya. Hasil analisa (Tegangan dan Regangan) dipakai sebagai acuan untuk penempatan strain gauge yang akan diletakkan pada dynamometer.

Metode dan batasan masalah yang ada pada Tugas Akhir adalah

  1. Data-data eksperimental dan toeritis perhitungan pemotongan logam hanya digunakan sebagai gaya awal pembebanan pada analisa menggunakan software
  2. Hasil dari simulasi merupakan pre-desain dari dynamometer yang akan dibuat, maka tidak perlu adanya verifikasi.

2 Sinopsis Tugas Akhir Lanjutan

Pada dasarnya, konsep dynamometer pemotongan logam adalah seperti konsep deflected beam secara sederhana dengan resultan gaya yang berasal dari gaya pemotongan dan gaya pemakanan.

Rencana Tugas Akhir dalam Komputasi Teknik adalah

  1. Mempelajari data-data eksperimental pemotongan logam dari beberapa makalah dan pengujian yang telah ada untuk mendapatkan input gaya potong dan gaya pemakanan.
  2. Data-data tersebut bisa jadi acak, namun bisa saja berpola, sehingga bisa digunakan dalam input komputasi teknik
  3. Permodelan hollow deflected beam sederhana dengan model matematis kemudian membandingkan antara perhitungan manual dengan simulasi software CAE.

Saya sangat berharap pada proyek ini mendapat Ilmu lebih mengenai komputasi teknik.


3. Presentasi Sinopsis Project Komputasi Teknik


Komputasi Teknik – Pertemuan III (17 Februari 2020)

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيم

Pada perkuliahan hari ini mendapatkan pelajaran dari Pak DAI yaitu harus melawan K, E, M (Ketidaktahuan, Egois dan Malas), dengan cara belajar secara istiqomah.

1. Konsep Metode Numerik

Metode Numerik adalah Teknik yang digunakan untuk memformulasikan persoalan matematik sehingga dapat dipejahkan dengan operasi perhitungan / aritmatika biasa (tambah, kurang, kali dan bagi), sehingga jika ada eror maka dilakukan solusi pendekatan. [4]

Mengapa harus mempeajari metode numerik

  1. Metode numerik merupakan alat bantu pemecahan masalah matematika yang "robust" dan dapat diterima dari banyak sisi termasuk secara enjiniring.
  2. Metode numerik digunakan untuk menyederhanakan permasalahan matematika menjadi operasi matematika yang mendasar.

Tahap-tahap memecahkan persoalan numerik

  1. Permodelan (dimodelkan dalam bentuk persamaan matematika)
  2. Penyederhanaan model (disederhanakan dengan mengeliminasi beberapa variable atau parameter)
  3. Formulasi numerik (Menentukan metode dan algoritma numerik)
  4. Pemrograman (Menentukan bahasa pemrograman yang digunakan)
  5. Operasional (Program dijalankan dengan data yang sudah diinput)
  6. Evaluasi (membandingkan hasil dengan prinsip dasar/teori)

Pengertian dalam metode numerik 1. Konvergensi

  • Definisi konvergensi: Secara umum pengertian konvergensi adalah penggabungan atau pengintegrasian dua atau lebih variable hasil untuk digunakan menuju satu titik tujuan, yang berarti dalam keteknikan bisa diartikan hubungan antara model dan jumlah diskrit sehingga tidak mengalami perubahan hasil, walaupun dilakukan penambahan atau pengurangan disktrit lagi.
  • Kapan dilakukan?: konvergensi dilakukan pada saat sebelum dan sesudah operasi sumulasi berjalan.
  • Bagaimana melaksanakan?: Pada aplikasi software FEA, secara sederhana cara melakukan crosscheck konvergensi adalah dengan merubah mesh (menambah jumlah nodal dan elemen) dari suatu model. Ketika penambahan jumlah nodal dan elemen tidak berpengaruh terhadap hasil maka hasil dapat dikatakan konvergen.


  • Mengapa perlu?: Konvergensi menjadi dasar diterimanya sebuah simulasi, karena menunjukan kestabilan dan keberterimaan suatu hasil.


2. Singularitas adalah sebuah titik atau kondisi yang mengalami nilai tak berhingga.


Pemodelan Matematis Project Tugas Akhir


Komputasi Teknik – Pertemuan IV (24 Februari 2020)

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيم

1. Quiz 1 - Komputasi Teknik (24 Februari 2020)

HrrypnQuiz1komtek.jpeg

2. Finite Element Method, Finite Diferential Method dan Finite Volume Method

Metode Elemen Hingga (FEM) adalah teknik variasi yang digunakan untuk menemukan solusi untuk gaya, deformasi, dll., Dengan meminimalkan energi potensial sistem di bawah beban yang diterapkan. [5]

Metode Elemen Hingga(FEM) adalah metode numerik untuk mencari solusi perkiraan dari distribusi variabel dalam domain masalah yang seringkali sulit diperoleh secara analitis. [6]

Metode Elemen Hingga (FEM) adalah metode komputasi yang membagi model CAD menjadi elemen yang sangat kecil tetapi terbatas hingga bentuk geometris sederhana. Kumpulan semua bentuk sederhana ini membentuk apa yang disebut elemen elemen hingga. Langkah selanjutnya adalah mengambil sistem persamaan diferensial parsial (PDE) yang menggambarkan displin ilmu fisikai, dan merumuskan persamaan ini untuk setiap elemen sebagai fungsi sederhana, seperti polinomial linier atau kuadratik, dengan jumlah derajat kebebasan terbatas (DOFs). Jenis solver yang digunakan tergantung pada model matematisnya.

Metode Beda Hingga (FDM) pendekatan paling langsung untuk mendiskritisasi persamaan diferensial parsial yang mempertimbangkan titik dalam ruang di mana kita mengambil representasi kontinum dari persamaan dan menggantinya dengan seperangkat persamaan diskrit, yang disebut persamaan beda hingga. Metode beda hingga biasanya didefinisikan pada kisi-kisi biasa dan fakta ini dapat digunakan untuk metode solusi yang sangat efisien. Oleh karena itu metode ini biasanya tidak digunakan untuk geometri CAD tidak teratur, tetapi lebih sering untuk model persegi panjang atau berbentuk blok.

Metode Volume Hingga (FVM) mirip dengan metode elemen hingga dalam model CAD yang pertama-tama harus dibagi menjadi elemen yang sangat kecil tetapi terbatas bentuk geometris sederhana. Terlepas dari ini, metode volume hingga sangat berbeda dari metode elemen hingga, dimulai dengan konsep elemen, yang sebaliknya disebut sebagai sel. Metode volume hingga didasarkan pada fakta bahwa banyak hukum fisika adalah hukum konservasi — yang masuk ke satu sel di satu sisi perlu meninggalkan sel yang sama di sisi lain. Secara historis, metode ini telah sangat berhasil dalam memecahkan masalah aliran fluida. [7]

3. Extended Abstract

Gaya potong yang dihasilkan dari proses pemotongan logam mesin bubut dapat berpengauh pada kerataan dan keakurasian benda kerja. Kinerja pemotongan logam mesin bubut dapat dianalisa dengan menggunakan dynamometer. Penelitian yang telah ada dynamometer di desain menggunakan konfigurasi struktur yang terdiri dari batang kantilever dan mur segi enam sebagai penempatan strain gauge. Pada penelitian ini dikembangkan desain dynamometer pemotongan logam mesin bubut dengan konfigurasi lebih sederhana dari batang kantilever berpenampang silinder dan segi empat yang kemudian dilakukan analisa statik maupun dinamik guna mendapatkan regangan-tegangan optimum dan mode getar sebagai dasar pemasangan strain gauge. Selanjutnya dari beberapa material dynamometer akan dipilih menggunakan Digital Logic Method and Weighting Factor sebagai kompensasi terhadap optimasi pemilihan material. Hasil yang diharapkan dari penelitian ini adalah konfigurasi bentuk optimum dari dynamometer dengan mempertimbangkan jenis penampang, bentuk konfigurasi dan properti material.

The cutting force that results from the metal cutting can affect the flatness and accuracy of the workpiece. The performance of metal cutting can be analyzed using a dynamometer. Existing research on the dynamometer designed using a structural configuration consisting of cantilever rods and hexagon nuts as strain gauge placement. In this research, a dynamometer design for a metal cutting machine with a simple configuration of a cylindrical and rectangular cantilevered rod is then performed both static and dynamic analysis to obtain optimum stress-strain and vibration mode as the basis for strain gauge installation. Furthermore, some dynamometer materials will be chosen using the Digital Logic Method and Weighting Factor as compensation for optimizing material selection. The expected result of this research is the optimum form configuration of the dynamometer by considering the type of cross-section, configuration shape, and material properties.

Komputasi Teknik – Pertemuan V (2 Maret 2020)

1. Pembelajaran Dalam Perkuliahan

Pada kesempatan hari ini kami melakukan pembelajaran mengenai definisi masalah serta mengelompokan jenis-jenis variabel dalam masalah tersebut. Menurut saya definisi masalah dan pengelompokan jenis variabel ini bisa disebut dengan penentuan batasan masalah dan kondisi batas, di mana sewajarnya sebuah analisa perlu adanya batasan masalah dan kondisi batas. Kasus yang dibahas adalah mengenai erosi suatu komponen yang merupakan Tugas Akhir dari saudara Ichwan. Pada Tugas Akhirnya telah diarahkan bahwa yang menyebabkan erosi adalah gesekan antara 2 komponen (Fslide = μslide N)


2. Pembelajaran Dalam Permasalahan Sehari-hari

Mendefinisikan kebutuhan sehari-hari yang kemudian dikonversikan ke dalam satuan energy, lalu menjadi satuan mata uang dan dibandingkan dengan pendapatan yang diterima.

3. Kalor dan Kalori

Kalor merupakan salah satu bentuk energi, karena kalor adalah energi panas yang mengalir dari benda yang bersuhu lebih tinggi ke benda yang bersuhu lebih rendah. Kalor diukur dengan satuan kalori. Satu kalori yaitu banyaknya energi panas yang dibutuhkan untuk menaikkan suhu sebesar 1°C pada 1 gram air. Air yang massanya 1.000 gram dinaikkan suhunya dari 24°C menjadi 25°C dibutuhkan energi sebesar 1.000 kalori. [8]

Di Indonesia, berdasarkan rekomendasi Angka Kecukupan Gizi (AKG) dari Kementerian Kesehatan RI: [depkes.go.id] 1. Pria usia 30 – 49 tahun adalah 2625 kkal per hari. 2. Perempuan usia 30 – 49 tahun adalah 2150 kkal per hari


Menghitung Kalori [9]

Terdapat dua jenis kalori, yaitu kalori kecil yang ditulis dalam satuan “kal” dan kalori besar atau “kilokalori” (kkal), dengan perhitungan 1 kkal sama dengan 1.000 kal. Cara menghitung kalori yang kita butuhkan menurut P2PTM Kemenkes RI sangat sederhana, karena hanya berdasarkan jenis kelamin dan tinggi badan. Sebelum menghitung, kita harus mengetahui terlebih dahulu tinggi badan (TB) dalam sentimenter dan Berat Badan Ideal (BBI) dengan rumus sebagai berikut:

BBI = (TB-100) – (10% x (TB – 100))

Selanjutnya, kita dapat hitung Kebutuhan Kalori Basal (KKB) atau Basal Metabolic Rate (BMR). KKB merupakan kebutuhan kalori yang dibutuhkan oleh tubuh untuk metabolisme basal, yakni metabolisme yang wajib dilakukan mahluk hidup walaupun tidak membutuhkan energi. Ini berarti metabolisme tubuh akan tetap berjalan meskipun dalam keadaan tidur atau tidak melakukan apa-apa. Berikut adalah rumus menghitung angka KKB:

KKB Laki-laki = 30 kkal x BBI

KKB Perempuan = 25 kkal x BBI

Menghitung Kebutuhan Kalori Total (KKT)

Kebutuhan kalori total adalah jumlah kebutuhan kalori tubuh ditambah dengan jumlah kalori saat melakukan aktivitas fisik. Kita mengenal tiga jenis aktivitas, yaitu

1. Aktivitas ringan seperti membaca (10%), menyetir mobil (10%), kerja kantoran (10%), mengajar (20%), berjalan (20%).

2. Aktivitas sedang: kerja rumah tangga (20%), jalan cepat (30%), bersepeda (30%).

3. Aktivitas berat: aerobik (40%), mendaki (40%), dan jogging (40%)

Rumus KKT = KKB + Aktivitas Fisik - Faktor Koreksi

Faktor koreksi adalah sebagai berikut:

Usia 40 - 59 tahun, nilai koreksinya minus 5%

Usia 60 - 69 tahun, nilai koreksinya minus 10%

Usia >70 tahun, nilai koreksinya minus 20%



4. Tabel Kebutuhan Harian Pemakaian Energi

KebEnergiHrrypn.jpg

Kebutuhan Energi2.jpg

Kebutuhan Energi3.jpg


Referensi

  1. Farin, G., Hoschek, J., & Kim, M. S. (Eds.). (2002). Handbook of computer aided geometric design. Elsevier.
  2. https://www.dictionary.com/browse/error
  3. Franz Baader; Tobias Nipkow (1998). Term Rewriting and All That. Cambridge University Press. ISBN 0-521-77920-0.
  4. Zainudin, Ahmad. Bahan Workshop Metode Numerik-Konsep Metode Numerik
  5. Bahreyni, B. (2008). Fabrication & design of resonant microdevices. William Andrew.
  6. Liu, G. R., & Quek, S. S. (2013). The finite element method: a practical course. Butterworth-Heinemann.
  7. https://www.machinedesign.com/3d-printing-cad/fea-and-simulation/article/21832072/whats-the-difference-between-fem-fdm-and-fvm
  8. https://www.berpendidikan.com/2016/01/pengertian-kalor-kalori-dan-rumus-perubahan-suhu.html
  9. https:// www.anlene.com/id/ms/berapa-banyak-kalori-yang-anda-butuhkan-setiap-hari.html