Difference between revisions of "Nadhif Rizki Priambodo"
(12 intermediate revisions by the same user not shown) | |||
Line 8: | Line 8: | ||
− | + | HASIL QUIZ | |
− | |||
coding | coding | ||
+ | |||
+ | No.1 | ||
+ | |||
print ("QUIZ nadhif rizki p - 1706026140") | print ("QUIZ nadhif rizki p - 1706026140") | ||
A = np.array([[1, 2, 0, -2, 0], [0, 1, 0, 2, -1], [0, 1, -1, 1, -1], [0, 0, 0, -1, 1], [0, 0, 2, 1, 2]], float) | A = np.array([[1, 2, 0, -2, 0], [0, 1, 0, 2, -1], [0, 1, -1, 1, -1], [0, 0, 0, -1, 1], [0, 0, 2, 1, 2]], float) | ||
Line 35: | Line 37: | ||
SCREENSHOT HASIL | SCREENSHOT HASIL | ||
+ | [[File:Bob.PNG]] | ||
+ | |||
+ | NO.2 | ||
+ | |||
+ | import numpy as np from run_kut4 import * from printSoln import * from math import exp | ||
+ | |||
+ | x = 0.03 def F(x,y): | ||
+ | |||
+ | F = np.zeros(1) | ||
+ | F[0] = ((31/32)*exp(-4))+((1/4)*x**2)-(1/8)*x+(1/32) | ||
+ | return F | ||
+ | x = 0.0 xStop = 0.03 y = np.array([160]) h = 0.01 freq = 1 | ||
+ | |||
+ | print(y) | ||
+ | |||
+ | X,Y = integrate(F,x,y,xStop,h) printSoln(X,Y,freq) input("\nPress return to exit") | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | == UTS Nadhif rizki p == | ||
+ | |||
+ | [nomor 1] | ||
+ | LINK VIDEO : https://www.youtube.com/watch?v=jyrRxuiw6QE | ||
+ | |||
+ | import numpy as np | ||
+ | class GEPP(): | ||
+ | def __init__(self, A, b, doPricing=True): | ||
+ | #super(GEPP, self).__init__() | ||
+ | |||
+ | self.A = A # input: A is an n x n numpy matrix | ||
+ | self.b = b # b is an n x 1 numpy array | ||
+ | self.doPricing = doPricing | ||
+ | |||
+ | self.n = None # n is the length of A | ||
+ | self.x = None # x is the solution of Ax=b | ||
+ | |||
+ | self._validate_input() # method that validates input | ||
+ | self._elimination() # method that conducts elimination | ||
+ | self._backsub() # method that conducts back-substitution | ||
+ | |||
+ | def _validate_input(self): | ||
+ | self.n = len(self.A) | ||
+ | if self.b.size != self.n: | ||
+ | raise ValueError("Invalid argument: incompatible sizes between" + | ||
+ | "A & b.", self.b.size, self.n) | ||
+ | |||
+ | def _elimination(self): | ||
+ | """ | ||
+ | k represents the current pivot row. Since GE traverses the matrix in the | ||
+ | upper right triangle, we also use k for indicating the k-th diagonal | ||
+ | column index. | ||
+ | :return | ||
+ | """ | ||
+ | |||
+ | # Elimination | ||
+ | for k in range(self.n - 1): | ||
+ | if self.doPricing: | ||
+ | # Pivot | ||
+ | maxindex = abs(self.A[k:, k]).argmax() + k | ||
+ | if self.A[maxindex, k] == 0: | ||
+ | raise ValueError("Matrix is singular.") | ||
+ | # Swap | ||
+ | if maxindex != k: | ||
+ | self.Ak, maxindex = self.Amaxindex, k | ||
+ | self.bk, maxindex = self.bmaxindex, k | ||
+ | else: | ||
+ | if self.A[k, k] == 0: | ||
+ | raise ValueError("Pivot element is zero. Try setting doPricing to True.") | ||
+ | # Eliminate | ||
+ | for row in range(k + 1, self.n): | ||
+ | multiplier = self.A[row, k] / self.A[k, k] | ||
+ | self.A[row, k:] = self.A[row, k:] - multiplier * self.A[k, k:] | ||
+ | self.b[row] = self.b[row] - multiplier * self.b[k] | ||
+ | |||
+ | def _backsub(self): | ||
+ | # Back Substitution | ||
+ | |||
+ | self.x = np.zeros(self.n) | ||
+ | for k in range(self.n - 1, -1, -1): | ||
+ | self.x[k] = (self.b[k] - np.dot(self.A[k, k + 1:], self.x[k + 1:])) / self.A[k, k] | ||
+ | |||
+ | |||
+ | def main(): | ||
+ | A = np.array([[1., 0., 0., 0.], | ||
+ | [-1., 1., 0., 0.], | ||
+ | [0., 0., -1., 1.], | ||
+ | [0., 0., 0., 1.]]) | ||
+ | b = np.array([[50.], | ||
+ | [20.], | ||
+ | [5.], | ||
+ | [10.]]) | ||
+ | |||
+ | GaussElimPiv = GEPP(np.copy(A), np.copy(b), doPricing=False) | ||
+ | print(GaussElimPiv.x) | ||
+ | print(GaussElimPiv.A) | ||
+ | print(GaussElimPiv.b) | ||
+ | GaussElimPiv = GEPP(A, b) | ||
+ | print(GaussElimPiv.x) | ||
+ | |||
+ | if __name__ == "__main__": | ||
+ | main() | ||
+ | |||
+ | SOAL NOMOR 2 | ||
+ | |||
+ | LINK VIDEO : https://www.youtube.com/watch?v=84Wtcoaow2Q | ||
+ | |||
+ | [[File:Noice.PNG]] | ||
+ | |||
+ | |||
+ | MUHASABAH DIRI NADHIF UNTUK JADI LEBIH BAIK | ||
+ | |||
+ | https://www.youtube.com/watch?v=U0VI7IZAV9s&feature=youtu.be | ||
+ | |||
+ | == Headline text == |
Latest revision as of 04:17, 28 October 2019
[Nama : Nadhif rizki priambodo]
[Semester : 5]
[Npm : 1706026140]
Mengikuti lomba kompetisi mobil hemat energi dan shell eco marathon tahun 2018-2020
HASIL QUIZ
coding
No.1
print ("QUIZ nadhif rizki p - 1706026140") A = np.array([[1, 2, 0, -2, 0], [0, 1, 0, 2, -1], [0, 1, -1, 1, -1], [0, 0, 0, -1, 1], [0, 0, 2, 1, 2]], float) B=np.array([-4, 1, -1, -2, 1],float)
n=len(A)
- menggunakan gauss elimination
for k in range (0,n-1):
for i in range (k+1, n): if A[i,k] ! = 0 lam= A[i,k]/A[k,k] A[i,k:n]= A[i,k:n]-(A[k,k:n]*lam) B[i]=B[i]-(B[k]*lam)
print ("matrix A:", "\n", A)
x=np.zeros( n,float) for m in range ( n-1, -1, -1)P:
x[m]=(B[m]-np.dot(A[m, m+1:n], x[m+1:n]))/A[m,m] print ('nilai x', m+1, '=', x[m])
NO.2
import numpy as np from run_kut4 import * from printSoln import * from math import exp
x = 0.03 def F(x,y):
F = np.zeros(1) F[0] = ((31/32)*exp(-4))+((1/4)*x**2)-(1/8)*x+(1/32) return F
x = 0.0 xStop = 0.03 y = np.array([160]) h = 0.01 freq = 1
print(y)
X,Y = integrate(F,x,y,xStop,h) printSoln(X,Y,freq) input("\nPress return to exit")
UTS Nadhif rizki p
[nomor 1] LINK VIDEO : https://www.youtube.com/watch?v=jyrRxuiw6QE
import numpy as np class GEPP():
def __init__(self, A, b, doPricing=True): #super(GEPP, self).__init__()
self.A = A # input: A is an n x n numpy matrix self.b = b # b is an n x 1 numpy array self.doPricing = doPricing
self.n = None # n is the length of A self.x = None # x is the solution of Ax=b
self._validate_input() # method that validates input self._elimination() # method that conducts elimination self._backsub() # method that conducts back-substitution
def _validate_input(self): self.n = len(self.A) if self.b.size != self.n: raise ValueError("Invalid argument: incompatible sizes between" + "A & b.", self.b.size, self.n)
def _elimination(self): """ k represents the current pivot row. Since GE traverses the matrix in the upper right triangle, we also use k for indicating the k-th diagonal column index. :return """
# Elimination for k in range(self.n - 1): if self.doPricing: # Pivot maxindex = abs(self.A[k:, k]).argmax() + k if self.A[maxindex, k] == 0: raise ValueError("Matrix is singular.") # Swap if maxindex != k: self.Ak, maxindex = self.Amaxindex, k self.bk, maxindex = self.bmaxindex, k else: if self.A[k, k] == 0: raise ValueError("Pivot element is zero. Try setting doPricing to True.") # Eliminate for row in range(k + 1, self.n): multiplier = self.A[row, k] / self.A[k, k] self.A[row, k:] = self.A[row, k:] - multiplier * self.A[k, k:] self.b[row] = self.b[row] - multiplier * self.b[k]
def _backsub(self): # Back Substitution
self.x = np.zeros(self.n) for k in range(self.n - 1, -1, -1): self.x[k] = (self.b[k] - np.dot(self.A[k, k + 1:], self.x[k + 1:])) / self.A[k, k]
def main():
A = np.array([[1., 0., 0., 0.], [-1., 1., 0., 0.], [0., 0., -1., 1.], [0., 0., 0., 1.]]) b = np.array([[50.], [20.], [5.], [10.]])
GaussElimPiv = GEPP(np.copy(A), np.copy(b), doPricing=False) print(GaussElimPiv.x) print(GaussElimPiv.A) print(GaussElimPiv.b) GaussElimPiv = GEPP(A, b) print(GaussElimPiv.x)
if __name__ == "__main__":
main()
SOAL NOMOR 2
LINK VIDEO : https://www.youtube.com/watch?v=84Wtcoaow2Q
MUHASABAH DIRI NADHIF UNTUK JADI LEBIH BAIK
https://www.youtube.com/watch?v=U0VI7IZAV9s&feature=youtu.be