Difference between revisions of "Nadhif Rizki Priambodo"

From ccitonlinewiki
Jump to: navigation, search
(UTS Nadhif rizki p)
Line 61: Line 61:
 
[nomor 1]
 
[nomor 1]
  
1. tuliskan print("Mencari input nilai m1?")
+
[http://www.example.com link title]
  
a= eval (input())
+
import numpy as np
 +
class GEPP():
 +
    def __init__(self, A, b, doPricing=True):
 +
        #super(GEPP, self).__init__()
  
2. tuliskan print("mencari input nilai m2?")
+
        self.A = A                      # input: A is an n x n numpy matrix
 +
        self.b = b                      # b is an n x 1 numpy array
 +
        self.doPricing = doPricing
  
b=eval (input())
+
        self.n = None                  # n is the length of A
 +
        self.x = None                  # x is the solution of Ax=b
  
3. tuliskan print("mencari input nilai m3?")
+
        self._validate_input()          # method that validates input
 +
        self._elimination()            # method that conducts elimination
 +
        self._backsub()                 # method that conducts back-substitution
  
c=eval (input())
+
    def _validate_input(self):
 +
        self.n = len(self.A)
 +
        if self.b.size != self.n:
 +
            raise ValueError("Invalid argument: incompatible sizes between" +
 +
                            "A & b.", self.b.size, self.n)
  
4. tuliskan print ("mencari input nilai m4?")
+
    def _elimination(self):
 +
        """
 +
        k represents the current pivot row. Since GE traverses the matrix in the
 +
        upper right triangle, we also use k for indicating the k-th diagonal
 +
        column index.
 +
        :return
 +
        """
  
d=eval (input())
+
        # Elimination
 +
        for k in range(self.n - 1):
 +
            if self.doPricing:
 +
                # Pivot
 +
                maxindex = abs(self.A[k:, k]).argmax() + k
 +
                if self.A[maxindex, k] == 0:
 +
                    raise ValueError("Matrix is singular.")
 +
                # Swap
 +
                if maxindex != k:
 +
                    self.Ak, maxindex = self.Amaxindex, k
 +
                    self.bk, maxindex = self.bmaxindex, k
 +
            else:
 +
                if self.A[k, k] == 0:
 +
                    raise ValueError("Pivot element is zero. Try setting doPricing to True.")
 +
            # Eliminate
 +
            for row in range(k + 1, self.n):
 +
                multiplier = self.A[row, k] / self.A[k, k]
 +
                self.A[row, k:] = self.A[row, k:] - multiplier * self.A[k, k:]
 +
                self.b[row] = self.b[row] - multiplier * self.b[k]
  
alfa= d/(a+b+c)
+
    def _backsub(self):
5. print ("jadi sin alfa sama dengan ", alfa)
+
        # Back Substitution
  
6. sudut alfa = math.asin(alfa)
+
        self.x = np.zeros(self.n)
 +
        for k in range(self.n - 1, -1, -1):
 +
            self.x[k] = (self.b[k] - np.dot(self.A[k, k + 1:], self.x[k + 1:])) / self.A[k, k]
  
7.sudutalfa2=math.degrees(sudutalfa)
 
  
print('jadi nilai sudut alfa adalah',sudutalfa2)
+
def main():
 +
    A = np.array([[1., 0., 0., 0.],
 +
                  [-1., 1., 0., 0.],
 +
                  [0., 0., -1., 1.],
 +
                  [0., 0., 0., 1.]])
 +
    b = np.array([[50.],
 +
                  [20.],
 +
                  [5.],
 +
                  [10.]])
 +
 
 +
    GaussElimPiv = GEPP(np.copy(A), np.copy(b), doPricing=False)
 +
    print(GaussElimPiv.x)
 +
    print(GaussElimPiv.A)
 +
    print(GaussElimPiv.b)
 +
    GaussElimPiv = GEPP(A, b)
 +
    print(GaussElimPiv.x)
 +
 
 +
if __name__ == "__main__":
 +
    main()
 +
 
  
 
== Headline text ==
 
== Headline text ==

Revision as of 03:21, 28 October 2019

[Nama : Nadhif rizki priambodo]

[Semester : 5]

[Npm : 1706026140]

Mengikuti lomba kompetisi mobil hemat energi dan shell eco marathon tahun 2018-2020


HASIL QUIZ

coding

No.1

print ("QUIZ nadhif rizki p - 1706026140") A = np.array([[1, 2, 0, -2, 0], [0, 1, 0, 2, -1], [0, 1, -1, 1, -1], [0, 0, 0, -1, 1], [0, 0, 2, 1, 2]], float) B=np.array([-4, 1, -1, -2, 1],float)

n=len(A)

  1. menggunakan gauss elimination

for k in range (0,n-1):

 for i in range (k+1, n):
   if A[i,k] ! = 0
     lam= A[i,k]/A[k,k]
     A[i,k:n]= A[i,k:n]-(A[k,k:n]*lam)
     B[i]=B[i]-(B[k]*lam)

print ("matrix A:", "\n", A)

x=np.zeros( n,float) for m in range ( n-1, -1, -1)P:

 x[m]=(B[m]-np.dot(A[m, m+1:n], x[m+1:n]))/A[m,m]
 print ('nilai x', m+1, '=', x[m])

SCREENSHOT HASIL Bob.PNG

NO.2

import numpy as np from run_kut4 import * from printSoln import * from math import exp

x = 0.03 def F(x,y):

  F = np.zeros(1)
  F[0] = ((31/32)*exp(-4))+((1/4)*x**2)-(1/8)*x+(1/32)
  return F

x = 0.0 xStop = 0.03 y = np.array([160]) h = 0.01 freq = 1

print(y)

X,Y = integrate(F,x,y,xStop,h) printSoln(X,Y,freq) input("\nPress return to exit")



UTS Nadhif rizki p

[nomor 1]

link title

import numpy as np class GEPP():

   def __init__(self, A, b, doPricing=True):
       #super(GEPP, self).__init__()
       self.A = A                      # input: A is an n x n numpy matrix
       self.b = b                      # b is an n x 1 numpy array
       self.doPricing = doPricing
       self.n = None                   # n is the length of A
       self.x = None                   # x is the solution of Ax=b
       self._validate_input()          # method that validates input
       self._elimination()             # method that conducts elimination
       self._backsub()                 # method that conducts back-substitution
   def _validate_input(self):
       self.n = len(self.A)
       if self.b.size != self.n:
           raise ValueError("Invalid argument: incompatible sizes between" +
                            "A & b.", self.b.size, self.n)
   def _elimination(self):
       """
       k represents the current pivot row. Since GE traverses the matrix in the
       upper right triangle, we also use k for indicating the k-th diagonal
       column index.
       :return
       """
       # Elimination
       for k in range(self.n - 1):
           if self.doPricing:
               # Pivot
               maxindex = abs(self.A[k:, k]).argmax() + k
               if self.A[maxindex, k] == 0:
                   raise ValueError("Matrix is singular.")
               # Swap
               if maxindex != k:
                   self.Ak, maxindex = self.Amaxindex, k
                   self.bk, maxindex = self.bmaxindex, k
           else:
               if self.A[k, k] == 0:
                   raise ValueError("Pivot element is zero. Try setting doPricing to True.")
           # Eliminate
           for row in range(k + 1, self.n):
               multiplier = self.A[row, k] / self.A[k, k]
               self.A[row, k:] = self.A[row, k:] - multiplier * self.A[k, k:]
               self.b[row] = self.b[row] - multiplier * self.b[k]
   def _backsub(self):
       # Back Substitution
       self.x = np.zeros(self.n)
       for k in range(self.n - 1, -1, -1):
           self.x[k] = (self.b[k] - np.dot(self.A[k, k + 1:], self.x[k + 1:])) / self.A[k, k]


def main():

   A = np.array([[1., 0., 0., 0.],
                 [-1., 1., 0., 0.],
                 [0., 0., -1., 1.],
                 [0., 0., 0., 1.]])
   b = np.array([[50.],
                 [20.],
                 [5.],
                 [10.]])
   GaussElimPiv = GEPP(np.copy(A), np.copy(b), doPricing=False)
   print(GaussElimPiv.x)
   print(GaussElimPiv.A)
   print(GaussElimPiv.b)
   GaussElimPiv = GEPP(A, b)
   print(GaussElimPiv.x)

if __name__ == "__main__":

   main()


Headline text