Difference between revisions of "Ahmad Muzakki"

From ccitonlinewiki
Jump to: navigation, search
(Pertemuan 3 (Selasa, 17 September 2019))
(Pertemuan 3 (Selasa, 17 September 2019))
Line 117: Line 117:
 
'''Turunan numerik'''
 
'''Turunan numerik'''
  
Turunan numerik ialah menentukan hampiran nilai turunan fungsi f yang diberikan dalam bentuk tabel
+
Turunan numerik ialah menentukan hampiran nilai turunan fungsi f yang diberikan dalam bentuk table.
 
Dalam melakukan perhitungan turunan metode numerik, intinya kita sangat dianjurkan untuk menggunakan alat hitung baik kalkulator maupun komputer. Kenapa ?, karena kita akan berurusan dengan angka yang memiliki banyak koma. Kemudian kita juga mendapat data-data berupa nilai-nilai suatu titik (nilai x dan y(f(x)). Kemudian kita akan mengidentifikasi metode yang akan kita gunakan berdasarakan data yang ada atau nilai yang akan kita cari.
 
Dalam melakukan perhitungan turunan metode numerik, intinya kita sangat dianjurkan untuk menggunakan alat hitung baik kalkulator maupun komputer. Kenapa ?, karena kita akan berurusan dengan angka yang memiliki banyak koma. Kemudian kita juga mendapat data-data berupa nilai-nilai suatu titik (nilai x dan y(f(x)). Kemudian kita akan mengidentifikasi metode yang akan kita gunakan berdasarakan data yang ada atau nilai yang akan kita cari.
  

Revision as of 22:23, 19 October 2019



Profil

Nama  : Ahmad Muzakki

NPM  : 1706986284

Jurusan : Teknik Mesin

Pertemuan 1 (Selasa, 3 September 2019)

Pada pertemuan kali ini dibuka dengan penjelasan mengenai betapa pentingnya mata kuliah Metode Numerik yang sebelumnya kita juga sudah mempelajari Kalkulus 1, Kalkulus 2, Aljabar Linear dan Matematika Teknik, yang dimana diajarkan cara menyelesaikan suatu masalah dengan cara Eksak. Namun cara tersebut tidak cukup efektif digunakan untuk menyelesaikan permasalahan yang sangat rumit atau melibatkan suku yang jumlahnya takhingga. Metode Numerik adalah suatu operasi memformulasikan persamaan matematika. Dalam penghitungan manusia dan kalkulator sederhana memiliki keterbatasan sehingga penghitungan numerik menggunakan komputasi. Salah satu komputasi paling sederhana yaitu menggunakan Microsoft Excel. Dengan komputasi dapat melakukan penghitungan lebih efisien dan akurat. Materi pertemuan hari ini diberikan studi kasus formulasi yang digunakan untuk menghitung Deret Taylor dari Sin phi/7. Deret Taylor ini untuk mengaproksimasikan nilai fungsi dengan jumlah dari turunan yang tak terhingga. Dalam menghitung fungsi ini terdapat beberapa konstanta yaitu:

i = turunan ke-i

X = phi/7

Ratio = suku n/suku n-1 yang dimasukkan dengan rumus = -1*(Nilai X)^2/((2*Nilai i+1))

Suku = Dimasukkan dengan rumus = Suku ke-n*Rasio pada nilai i

Fungsi = Dimasukkan dengan rumus = Fungsi ke n-1 + Suku ke n

Error = Dimasukkan dengan rumus = ABS(suku ke n/fungsi ke n-1)


Numerical Methods Taylor Series Method.jpg


Rumus Taylor Series Sin.png


Screenshot Pertemuan 1 Metnum.png


Berdasarkan hasil komputasi dari table diatas, maka nilai dari Sin(phi/7) = 0.43388. Hasil yang didapat dari nilai Sin(phi/7) juga ditentukan berdasarkan nilai error yang diperlukan, dalam software Microsoft Excel ini hanya dapat menggunakan maksimal 9 nilai error.

Tugas 1

Tugasnya yaitu mereview materi di pertemuan 1 dengan mencari nilai dari Cos(phi/7) dan e^(phi/7) dengan menggunakan Microsoft Excel.

1) Akpromisasikan nilai Cos(phi/7)

Deret-taylor-dan-mclaurin-6-638.jpg

Melihat dari Deret Taylor Cos(x) maka rationya = -1*(Nilai x)^2/((2*Nilai i)*(2*Nilai i-1))

Screenshot cos(phi7).png

Berdasarkan table tersebut maka nilai Cos(phi/7)= 0.90097

2) Akpromisasikan e^(phi/7)

2-galat-26-638.jpg

Melihat dari Deret Taylor e^(phi/7) maka rationya = Nilai x/Nilai i

Screenshot e^(phi7).png

Berdasarkan table tersebut maka nilai e^(phi/7) = 1.5664


Pertemuan 2 (Selasa, 10 September 2019)

Pada pertemuan kedua kali ini dilanjutkan materi pembelajaran dengan hal yang tentunya sangat mendasar dalam mata kuliah Metode Numerik, yaitu Jenis-jenis Bahasa Pemrograman. Jeni-jenis bahas pemrograman sangatlah banyak, namun yang Pak Engkos sebutkan dan jelaskan hanya beberapa saja diantaranya :

- Pseudo Code

- Bahasa Pemrograman C++

- Python

- Bahasa C

- PHP

- Visual Basic

- Java

- JavaScript

Kemudian Pak Engkos memberikan contoh penerapan dari salah satunya, yaitu Pseudo Code. Berikut merupakan contoh pemrograman untuk mencari nilai dari sin(x) dengan menggunakan Pseudo Code

i=1

err=1

suku=x

sin=suku

while err>1e-7

{

ratio=-(x^2)/(2*i)/(2*i+1)

suku=suku*ratio

err=abs(suku/sin)

sin=sin+suku

i=i+1

}


Pertemuan 3 (Selasa, 17 September 2019)

Turunan numerik

Turunan numerik ialah menentukan hampiran nilai turunan fungsi f yang diberikan dalam bentuk table. Dalam melakukan perhitungan turunan metode numerik, intinya kita sangat dianjurkan untuk menggunakan alat hitung baik kalkulator maupun komputer. Kenapa ?, karena kita akan berurusan dengan angka yang memiliki banyak koma. Kemudian kita juga mendapat data-data berupa nilai-nilai suatu titik (nilai x dan y(f(x)). Kemudian kita akan mengidentifikasi metode yang akan kita gunakan berdasarakan data yang ada atau nilai yang akan kita cari.

Metode yang kita gunakan ada 3, yaitu turunan maju, turunan mundur, dan turunan pusat. Tetapi rumus yang digunakan berbeda untuk rumus turunan ke-1 dan ke-2. Perlu diingatkan juga bahwa jarak antar titik yang akan digunakan dalam perhitungan haruslah sama.


Turunan Maju (Forward)

f’(x0) = f(x1)-f(x0)/(x1-x0)

Forward.JPG


Turunan Mundur (Backward)

f’(x0) = f(x0)-f(x-1)/(x0-x-1)

Backward.JPG


Turunan Pusat (Center)

f’(x0) = f(x+1)-f(x-1)/(x+1-x-1)

Center.JPG


Untuk nilai h yang sama mengunakan metode Center sangatlah dianjurkan karena mempunyai tingkat keakuratan yang paling baik. Namun terlepas dari metode yang digunakan untuk mendapatkan nilai dengan keakuratan terbaik bisa didapatkan dengan memasukan nilai h sekecil mungkin.