Difference between revisions of "Kelompok 2"

From ccitonlinewiki
Jump to: navigation, search
Line 1: Line 1:
 
1. [[Ryanson Jonathan]]
 
1. [[Ryanson Jonathan]]
  
2. Agis Gilang Setiawan
+
2. [[Agis Gilang Setiawan]]
  
3. Ales Daniel
+
3. [[Ales Daniel]]
  
  

Revision as of 17:45, 16 October 2019

1. Ryanson Jonathan

2. Agis Gilang Setiawan

3. Ales Daniel


Eliminasi Gauss

Pengerjaan dilakukan menggunakan algoritma Gauss seperti yang ada di buku Phyton. Namun, yang membedakan adalah tidak menggunakan module pada pengerjaan ini. Berikut adalah algoritma yang sudah dirancang berdasarkan soal pada buku Phyton :

Algoritma yang kami gunakan adalah sebagai berikut:

a = [[2,-3,-1], \
[3,2,5], \
[2,4,4]]
b = [[3], \
[-9], \
[-5]]
n = len(b)
for k in range(0, n-1):
  for i in range(n-1, k, -1):
    if a[i][k] != 0.0:
      op= a[i][k]/a[i-1][k]
      b[i][0]=b[i][0]-op*b[i-1][0]
      for f in range(0,n):
        a[i][f]=a[i][f]-op*a[i-1][f]
Hasil=['Hasilnya']
if a[2][2] !=0:
  z=b[2][0]/a[2][2]
else:
  z=0
if a[0][0] !=0:
  y=(b[1][0]-z*a[1][2])/a[1][1]
else:
  y=0
if a[0][0] !=0:
  x=(b[0][0]-z*a[0][2]-y*a[0][1])/a[0][0]
else:
  x=0
hasil=(x,y,z)
print(a)


Gauss test kelompok2.jpg

Runge-Kutta Method


Pengerjaan dilakukan dan kode dirancang untuk mengikuti contoh soal.

# Di sini, kita akan menggunakan x0 dan y sebagai titik asal, x sebagai t yang diinginkan, dan h sebagai increment. Kita menggunakan h = 0.01. 
x0 = 0
y = 0
h = 0.01
x = float(input("Masukkan nilai t: "))
if 0 <= x < 2:
  # dydx menyatakan persamaan awal dalam soal. Persamaan harus diintegralkan sekali untuk menghasilkan persamaan kecepatan.
  # Didapat hasil 2x^2 - 30xy karena dipakai massa m = 2,5 kg dan konstanta pegas k = 75 N/m.
  # P(t) dinyatakan dalam x. 
  def dydx(x, y): 
    return (2*x**2 - 30*x*y) 
  # Ini merupakan implementasi perhitungan Runge-Kutta.
  def rungeKutta(x0, y0, x, h): 
    n = (int)((x - x0)/h)  
    y = y0 
    for i in range(1, n + 1): 
       k1 = h * dydx(x0, y) 
       k2 = h * dydx(x0 + 0.5 * h, y + 0.5 * k1) 
       k3 = h * dydx(x0 + 0.5 * h, y + 0.5 * k2) 
       k4 = h * dydx(x0 + h, y + k3) 
 
       # untuk y selanjutnya 
       y = y + (1.0 / 6.0)*(k1 + 2 * k2 + 2 * k3 + k4) 
 
       # untuk x selanjutnya
       x0 = x0 + h 
    return y 
  print("Nilai y pada t =", x, "adalah", rungeKutta(x0, y, x, h))
elif x >= 2:
  # Ketika x >= 2, perhitungan harus diganti karena P(t) sudah konstan di angka 20 N.
  def dydx(x, y): 
    return (8 - 30*x*y) 
  def rungeKutta(x0, y0, x, h): 
    n = (int)((x - x0)/h)  
    y = y0 
    for i in range(1, n + 1): 
       k1 = h * dydx(x0, y) 
       k2 = h * dydx(x0 + 0.5 * h, y + 0.5 * k1) 
       k3 = h * dydx(x0 + 0.5 * h, y + 0.5 * k2) 
       k4 = h * dydx(x0 + h, y + k3) 
       y = y + (1.0 / 6.0)*(k1 + 2 * k2 + 2 * k3 + k4)
       x0 = x0 + h 
    return y 
  print("Nilai y pada t =", x, "adalah", rungeKutta(x0, y, x, h))
else:
  print("Mohon masukkan nilai t positif.")

Flowdiagram RungeKutta Kelompok2.jpg