Difference between revisions of "User:Trio Kurnia Ryplida"

From ccitonlinewiki
Jump to: navigation, search
(Pertemua Rabu, 22 April 2020)
(Pertemua Rabu, 22 April 2020)
Line 186: Line 186:
 
== '''Pertemua Rabu, 22 April 2020''' ==
 
== '''Pertemua Rabu, 22 April 2020''' ==
  
Pada hari ini pak Dai memberi kesempatan untukmenjelaskan yang  
+
Pada hari ini pak Dai memberi kesempatan untuk menjelaskan materi mekanika fluida yang kita pahami.
 +
 
 
Soal 5 Judul Artikel: Pengaruh Sub-layer pada aliran Turbulen
 
Soal 5 Judul Artikel: Pengaruh Sub-layer pada aliran Turbulen
  
 
Viskos sub layer adalah lapisan tipis dekat dinding yg kontak langsung dengan dinding aliran fluida pada aliran turbulen dgn turbulensi minimal yg nantinya energi turbulen itu diubah mnjadi energi panas. Semakin tipis sub layernnya semakin halus pipanya maka tegangan geseknya akan semakin kecil. Makasemakin tipis sublayernya maka preassure dropnya akan semakin kecil.
 
Viskos sub layer adalah lapisan tipis dekat dinding yg kontak langsung dengan dinding aliran fluida pada aliran turbulen dgn turbulensi minimal yg nantinya energi turbulen itu diubah mnjadi energi panas. Semakin tipis sub layernnya semakin halus pipanya maka tegangan geseknya akan semakin kecil. Makasemakin tipis sublayernya maka preassure dropnya akan semakin kecil.
 +
 +
koreksi: jadi maksud halus disini bukan gerakan air yg menggelinding namun tetap ada hambatannyanya, jika air menggelinding maka dia akan seperti daun talas yang mana gerak air tidak ada hambatannya, sedangkan pada pipa tidak terjadi hal seperti itu. jadi saya keliru dalam menulis kan kata halus pada artikel ini

Revision as of 14:44, 28 April 2020

Trio Kurnia Ryplida.S1 Teknik Mesin Ekstensi 2019.Universitas Indonesia

Alhamdulillah, segala puji bagi Allah SWT Tuhan semesta alam dan sholawat beserta salam kepada Nabi Muhammad SAW.


BIODATA

Nama  :Trio Kurnia Ryplida

Npm  : 1906435561

Agama  : Islam

No.Telp  : 085274017943

Pendidikan Terakhir: Diploma III

Tempat/Tgl lahir  : Padang, 29 oktober 1997

Pertemuan Selasa,31 Maret 2020

Pertemuan pertama pada hari ini dimulai dengan pemberian materi oleh bang Muhammad Hilman Gumelar atau akrab disapa bang Edo. Materi tersebut berisi tentang penjelasan aliran viskos di dalam pipa, pressure lost, hubungan dari jenis aliran viskos dengan pressure lost dan simulasi aliran didalam pipa menggunakan software CFDSOF.Nilai Re kurang dari 2100 maka aliran tersebut laminer dan jika Re nya lebih dari 4000 maka aliran tersebut turbulen.


Simulasi CFDSOF

Dalam simulasi dibuat geometri berbentuk box dan ukuran dimensi yang menggunakan sumbu x,y,z. Simulasi tersebut terbagi atas penentuan base mesh, generate mesh, check mesh, simulation model, fluid properties , dan boundary condition.

Langkah awal.PNG

Lalu memasukkan ukuran dari Box Mesh Properties

Langkah 2.PNG

Ini hasil dari CFD-Solve ,dengan 65 iterasi yang dihasilkan

Langkah 3.PNG

Kemudian hasil simulasi dalam penentuan besaran area dari nilai U yang merata sepanjang area.

Flow.PNG


PR

1. Apa itu Entrance Region ? suatu wilayah atau daerah yang berada didekat dengan tempat masuknya fluida ke pipa. Atau bagian awal dari suatu empat aliran yang masuk dari suatu sumber. Contohnya Furnace.

2. Apa itu aliran berkembang sempurna ? kondisi dimana profil kecepatan fluida akan menjadi tetap besarnya.

3. Pengaruh Viskositas terhadap aliran?

4. Apa yang mempengaruhi Preassure Drop ? penurunan tekanan yang terjadi karena adanya gesekan pada fluida yang mengalir. Pressure drop akan semakin tinggi dan berbanding lurus dengan gesekan pada fluida. Sedangkan besarnya gesekan dipengaruhi oleh viskositas dari suatu fluida.

5. Apa hubungan Entrance Region dengan Fully Develope Flow ?

Pertemua Rabu, 1 April 2020

Pada pertemuan ini Pak Dai menjelaskan tentang 3 Hukum Konservasi yang mana terdiri dari Massa, Mommentum, dan Energi.

Rumus Dasar Hukum Konservasi

Lalu penjelasan perbedaan Pendekatan Sistem (Lagrange) dan Control Volum (Euler). Penjelasan tentang Preassure Drop, yang mana perumusan untuk mencari pressure drop adalah Tekanan total yang masuk dikurangi dengan tekanan total yang keluar.

Ptot=Ps+Pd

Pd=1/2 ρv^2

Kemudian dilakukan pengulangan tentang langkah langkan membuat CFDSOF 2D oleh Bang Edo untuk memperbaiki bentuk grafik kecepatan.

Diberikan latihan soal dengan penyelesaiaan menggunakan CFDSOF:

Soal Latihan

Hasil dari pemecahan masalah menggunakan CFDSOF terdiri dari Grafik dan perbandingan kecepatan dari beberapa titik.

Hasil pemecahan masalah untuk Soal a1 dan b1 yang mana dengan kecepata 0,01 m/s dan dynamik viskos 4x10^-5

Grafik untuk soal a1 dan b1 Perubahan pada beberapa titik untuk soal a1 dan b1


Hasil untuk soal a2 dengan keceparan 0,01 m/s dan dynamik viskos 10^-5

GraFik Untuk soal a2    Perubahan pada beberapa titik untuk soal a2


Hasil untuk soal b2 dengan kecepatan 0,04 m/s dan dynamik viskos 4x10^-5

Grafik untuk soal b2 Perubahan pada bebrapa titik untuk soal b2


Pertemua Selasa, 7 April 2020

Jadi pada pertemuaan ini Pak Dai menjelasakan bahawa CFDSOF menyelesaikan masalah dengan Governing Equation (pengaturan fluida dengan menggunakan Hukum Konservasi)

Lalu Pak Dai menjelaskan konsep bahawa semakin tinggi viskositas suatu fluida maka akan terjadi gesekan yang akan menyebabkan Fully Develope lebih cepat terjadi.

maka terentuklah perumusan  : Viskostas Dynamic

Jika gaya inersia yang terjadi semakin tinggi maka Fully Develope akan semakin lambar terjadi dan Entrance Region akan semakin panjang.

Maka karna ada pengaruh viskositas dan kecepatan, bilangan Reynold akan terpengaruh. Jika semakin kecil bilangan Reynold maka akan semakin cepan terjadinya Fully Develope dan Entrance Region akan semakin pendek.

Reynold Equation


Pertemua Rabu, 8 April 2020

Pada pertemuan ini pak Dai menyampaikan materi tentang macam-macam aliran fluida berdasarkan nilai Reynolds numbernya dan lebih banyak membahas tentang aliran turbulen. Pada dasarnya aliran adalah sebuah fenomena dimana suatu fluida mengalami deformasi secara terus menerus. Dalam menentukan jenis aliran fluida kita bisa menggunakan Reynolds Number. Reynolds number adalah perbandingan dari gaya inersia suatu fluida terhadap gaya viskos fluida tersebut. Nilai Reynolds number yang kecil (Re<2200) menggambarkan tentang garis-garis aliran yang bergerak secara ideal dan sangat teratur. Jenis aliran ini adalah aliran laminer. Nilai Reynolds number lebih dari 2200 namun kurang dari 4000, menggambarkan aliran mulai berfluktuasi (bergelombang) secara teratur. Jenis aliran ini adalah aliran transisi. Nilai Reynolds number yang lebih besar dari aliran transisi menggambarkan garis-garis aliran yang berfluktuasi hingga terjadinya tumbukan antar garisnya atau biasa disebut dengan rapid fluctuation. Jenis aliran ini adalah aliran turbulen.

Pada aliran turbulen persoalan yang terjadi adalah bagaimana kita memperkirakan kecepatan lokal pada medan kecepatan untuk mengetahui pergeseran karena gesekan yang disebabkan oleh aliran turbulen tersebut. Kita dapat mengetahuinya dengan menggunakan statistik untuk memperkirakan kecepatan lokal di suatu titik (misalnya titik A). Kemudian dibuatlah fluktuasi pada kecepatan yang disebut dengan kecepatan rata-rata. Pada dasarnya kecepatan rata-rata tidak menggambarkan kecepatan aliran turbulen, namun kecepatan rata-rata tersebut digunakan untuk mencari kecepatan aliran turbulen yang riil. Rumus kecepatan turbulen adalah kecepatan rata-rata ditambah dengan kecepatan fluktuasi pada aliran tersebut. Kecepatan fluktuasi adalah selisih kecepatan rata-rata dengan kecepatan sesaatnya.

Pada soal di buku Munson nomor 8.4 bagian a menyinggung tentang viskos sub-layer. Viskos sub-layer adalah suatu lapisan tipis dekat dinding aliran turbulen yang memiliki gaya turbulen kecil yang nantinya energi turbulen tersebut diubah menjadi energi panas.

Kemudian bang Edo memberikan tentang gambaran profil kecepatan antara aliran laminer dan aliran turbulen sebagai berikut:

Grafik perbedaan aliran Laminer dan Turbulem

Grafik tersebut sudah dilakukan normalisasi dengan cara membagi masing-masing kecepatan pada setiap titik dengan kecepatan aliran masuk agar grafik aliran laminer terlihat lebih jelas dikarenakan selisih nilai kecepatan aliran laminer dan turbulen terlampau sangat jauh. Maka dari itu agar kita dapat melihat dengan jelas profil kecepatan masing-masing aliran dilakukan normalisasi pada kecepatan aliran-aliran tersebut pada setiap titik.


Pertemua Selasa, 14 April 2020

Pada pertemuan ini pak Dai memberikan quiz untuk membuat sebuah artikel untuk setiap soal di wikipage. Artikel-artikelnya adalah sebagai berikut :


Soal 1 Judul Artikel : Perumusan Utama pada penyelesaian Mechanical Fluida Jadi rumusan uama pada penyelesaiaan masalah Mechanical Fluida adalah 3 Hukum konserfasi yang mana meliputi : 1. Massa

                  dm/dt=0 massa pada aliran = 0, tidak ada yang hilang dan tidak ada yang diciptakan..

2. Mommentum

           Dimana suatu sistem mengalami percepatan dengan adanya gaya neto atau gaya ≠0.  M dv/dt= ∑F

3. Energi

          Energi mengalami perubahan total terhadap  waktu, maka perubahan energi itu akan diikuti dengan kerja dan aliran panas  dE/dt=W+Q


Soal 2. Judul Artikel: Pengaruh Fully Develope pada Aliran Laminar

Yang mana bisa kita ketahui aliran laminar merupakan aliran yang stabil , yang jika RE < 2300 maka jika RE nya kecil maka fully develop akan semakin ceat terjadi . dan jika LE( Entrance Region ) semakin kecil maka Fully develop akan lebih cepat terjadi karna perumusannnya LE = 0,06 x RE x D .maka dari itu RE berpengaruh pada bentuk aliran dan kecepatan terjadinya fully develope.

Soal 3 Judul Artikel: Preassure Drop padaAliran Turbulen

Aliran turbulen merupakan aliran yang tidak stabil diman pada aliran turbulen terjadi terjadi banyak perubahan kecepatan maka dari itu untuk mendapatkan kecepatan realnya maka dibutuh kan kecepatan rata-rata dari alira tersebut. Lalu aliran turbulen pada RE > 4000. Maka akan menyebabkan tinggi nya preasurre drop. Jika dibandingkan dengan aliran laminer preassure drop pada aliran turbulen bisa berkali kali lipat besarnya dari pada aliran laminer. Pada aliran turbulen kita membutuh kan menghitung sub layer karna akan berpengaruh pada preassure drop.

Soal 4 Judul Artikel: Pembahasan Proses pencarian Preassure drop pada pipa Horizontal dan yang mengalamin sebuah sudut

a. jika pipa horizontal brapa preasure drop sepanjang 10m

jika semakin panjang pipa maka akan mempengaruhi preassure drop maka langkah yang pertama dicari adalah dnegan menggunakan rumus preassure delta P = P1-P2 =128μlQ/(πD^4 ) maka didapatkan berapa preassure dropnya.

b. Sudut disaat P1=P2

maka penyelsaiaan nya menguakan perumusan sinθ = -128μQ/(πρgD^4 ) karna hasil yang di dapat -1,15 sedang kan interval sudut -1 s/d 1 maka cara terbaik dilakukan agar dapat diaplikasikan dengan memperbesar diameternya.

c. Berapa presure disaat 5 meter

proses penyelesaiaan mengikuti pertanyaan yang B, maka dikarnakan P1=P2 maka pada titik l =5 maka bisa dinyatakan P1=P3.

Soal 5 Judul Artikel: Pengaruh Sub-layer pada aliran Turbulen

Viskos sub layer adalah lapisan tipis dekat dinding yg kontak langsung dengan dinding aliran fluida pada aliran turbulen dgn turbulensi minimal yg nantinya energi turbulen itu diubah mnjadi energi panas. Semakin tipis sub layernnya semakin halus pipanya maka tegangan geseknya akan semakin kecil. Makasemakin tipis sublayernya maka preassure dropnya akan semakin kecil.

Soal 6 Judul Artikel : Perandingan Preassure drop yang terjadi pada aliran Laminar dan Turbulen

Bisa kita ketahui bahwa ada perbedaaan pada bilangan Reynold pada masing masing aliran.yang mana akan mempengaruhi pada preassure drop nya karna semakin besar bilangan Reynold nya maka Viskosnya akan semakin besar , jika viskosnya besar/kecil maka kan mempengaruhi kepada cepat / lambat terjadinya Fully Develope. Maka dari itu semakin cepat/lambat fully develope terjadi maka akan mempengaruhi pada besar atau kecil nya preassure dropnya.


Pertemua Rabu, 15 April 2020

Pada pertemuan ini pak Dai memberikan penjelasan tentang tekanan dan minor loss. Tekanan adalah energi per satuan volume, sehingga jika kita ingin memperkecil pressure drop yang terjadi adalah dengan mengurangi nilai volume tersebut. Minor losses adalah sebuah kerugian pada suatu desain aliran yang mana disebabkan oleh adanya perubahan penampang ataupun adanya elbow. Kemudian pak Dai memberikan PR, yaitu adalah kolaborasi kelas (terjemahan dan diskusi) dan untuk artikel (perorangan/SETIAP mahasiswa) membahas secondary flow di fittings (bebas: reducer, elbow, Valve dll) dgn simulasi CFDSOF.


Pertemua Selasa, 21 April 2020

Pertemua Rabu, 22 April 2020

Pada hari ini pak Dai memberi kesempatan untuk menjelaskan materi mekanika fluida yang kita pahami.

Soal 5 Judul Artikel: Pengaruh Sub-layer pada aliran Turbulen

Viskos sub layer adalah lapisan tipis dekat dinding yg kontak langsung dengan dinding aliran fluida pada aliran turbulen dgn turbulensi minimal yg nantinya energi turbulen itu diubah mnjadi energi panas. Semakin tipis sub layernnya semakin halus pipanya maka tegangan geseknya akan semakin kecil. Makasemakin tipis sublayernya maka preassure dropnya akan semakin kecil.

koreksi: jadi maksud halus disini bukan gerakan air yg menggelinding namun tetap ada hambatannyanya, jika air menggelinding maka dia akan seperti daun talas yang mana gerak air tidak ada hambatannya, sedangkan pada pipa tidak terjadi hal seperti itu. jadi saya keliru dalam menulis kan kata halus pada artikel ini