Difference between revisions of "Kevan Jeremy Igorio"

From ccitonlinewiki
Jump to: navigation, search
(Pertemuan 3 (7 April 2020))
(Pertemuan 3 (7 April 2020))
Line 194: Line 194:
  
  
Reynold Number menunjukkan peranan gaya inersia terhadap gaya viscous. Bilangan Inersia adalah rasio antara gaya inersia dengan gaya viscous. Bila Reynold Numbers besar berarti Gaya Inersia lebih dominan dibandingkan Gaya viscous maka aliran tersebut bersifat lebih lembam. Contohnya adalah aliran udara, aliran di sekitar sayap pesawat, dan aliran aerodinamika. Jika sebaliknya, Reynold Numbers yang kecil berarti bahwa gaya inersia tidak dominan terhadap gaya viscous. Contohnya adalah pada pelumasan atau lumbrikasi. Reynold Numbers yang tinggi cenderung menyebabkan aliran fluida menjadi turbulent. Jika Reynold Numbers rendah maka Aliran fluida cenderung laminer karena gaya inersia terabsorb oleh gaya viscous
+
Reynold Number menunjukkan peranan gaya inersia terhadap gaya viscous. Bilangan Inersia adalah rasio antara gaya inersia dengan gaya viscous. Bila Reynold Numbers besar berarti Gaya Inersia lebih dominan dibandingkan Gaya viscous maka aliran tersebut bersifat lebih lembam. Contohnya adalah aliran udara, aliran di sekitar sayap pesawat, dan aliran aerodinamika. Jika sebaliknya, Reynold Numbers yang kecil berarti bahwa gaya inersia tidak dominan terhadap gaya viscous. Contohnya adalah pada pelumasan atau lumbrikasi. Reynold Numbers yang tinggi cenderung menyebabkan aliran fluida menjadi turbulent. Jika Reynold Numbers rendah maka Aliran fluida cenderung laminer karena gaya inersia terabsorb oleh gaya viscous.
 +
 
 +
 
 +
Lapisan batas pada aliran fluida terjadi karena adanya interaksi antara dinding dengan partikel fluida menyebabkan timbulnya gaya yang menahan aliran. Lapisan batas merupakan sebuah tebal dari titik 0 pada dinding sampai dengan kecepatan pada lapisannya menyamai kecepatan aliran diluar. Daerah dari titik 0 hingga lapisan atas dan lapisan bawah bertemu disebut entrance region.

Revision as of 08:24, 13 April 2020

BIODATA DIRI

Foto Diri

Nama : Kevan Jeremy Igorio

NPM : 1806233266

Program Studi : S1 Teknik Mesin Pararel Universitas Indonesia

Mekanika Fluida 02 - 2020

Pertemuan 1 (31 Maret 2020)

Pada pertemuan Mekanika Fluida pertama, Kelas dipimpin oleh Bpk. Muhammad Hilman selaku asisten dari Bpk. Dr. Ir. Ahmad Indra Siswantara. Pertemuan pertama kali ini membahas mengenai konsep dasar dari aliran viscous dan simulasi analisis laminar flow menggunakan software CFDSOF.

Konsep Dasar

Aliran Fluida berdsarkan kekentalannya dapat diabgi menjadi dua jenis yaitu Aliran Inviscid dan Aliran Viscous.

- Aliran Inviscid adalah aliran yang fluidanya tidak mengalami perubahan viskositas. Jika fluida mengalir dalam pipa maka tangential stress atau shear stress pada fluida sama dengan nol. Aliran fluida ini sering disebut juga dengan fluida ideal. Namun dalam kenyataan kondisi ini tidak dapat ditemukan dalam fluida apapun.

- Aliran viscous adalah aliran yang memiliki shear stress atau tegangan geser.Hal ini disebabkan karena pada aliran viscous, Viskositas aliran tidak diabaikan sehingga aliran ini disebut juga sebagai aliran real.


Aliran Viscous

Aliran viscous dapat dibedakan menjadi tiga macam yaitu Aliran Laminer, Aliran Turbulen, dan Aliran Transisi.Pada pertemuan kali ini fokus pembelajaran akan lebih fokus kepada aliran laminer atau laminar flow. Secara sederhana, ketiga aliran tersebut dibedakan oleh besarnya nilai Reynolds Number dari tiap aliran. Berikut pengertian dan perbedaan dari Aliran Laminar dan Aliran Turbulen.

- Aliran Laminar adalah aliran fluida yang bergerak dengan kondisi lapisan-lapisan yang membentuk garis-garis alir dan tidak berpotongan satu sama lain. Alirannya relatief mempunyai kecepatan rendah dan fluida mengalir dengan bentuk garis lurus dan sejajar. Aliran laminer mempunyai Reynold Number lebih kecil dari 2300.aliran laminar memenuhi hukum viskositas Newton yaitu : τ = µ dy/du.

- Aliran Turbulen adalah aliran fluida yang partikel-partikelnya bergerak secara acak dan tidak stabil. Akibat dari hal tersebut garis alir antar partikel fluidanya saling berpotongan. Aliran turbulen mempunyai bilangan reynold yang lebih besar dari 4000.

-Aliran transisi adalah aliran peralihan dari aliran laminar ke aliran turbulen. Reynold Number dari aliran transisi berkisar antar 2300 - 4000


Bilangan Reynolds

bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/L) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan ini digunakan untuk mengidentikasikan jenis aliran yang berbeda, misalnya laminar , turbulen atau transisi. Rumus bilangan Reynolds umumnya adalah sebagai berikut:

Re = (μvd) / U = Gaya Inersia / viskositas

Dimana:

Re–bilangan renolds

U – kecepatan fluida,

d – diameter pipa,

μ – viskositas absolut fluida dinamis,

ν – viskositas kinematik fluida: ν = μ / ρ,

ρ – kerapatan (densitas) fluida.


Analisis Laminar Flow Menggunakan Software CFDSOF

Pertama, Menentukan kecepatan fluida agar didapat aliran yang laminar. Kecepatan diubah sedemikian rupa hingga Reynolds Number dibawah 2100 atau yang berarti aliran tersebut merupakan aliran laminar. Pada simulasi kali ini kecepatan fluida (U) diasumsikan sebesar o,01 m/s. Pada kecepatan tersebut Reynolds Number yang didapat sebesar 68,056. Data Aliran Fluida

Kedua, Membuat Domain Fluida

Ketiga, Mengatur jumlah meshing (grid) dan Box Mesh Boundaries

MessageImage 1585679793962.jpg


Keempat, Membuat Titik acuan lalu Generate Mash

MessageImage 1585679800318.jpg


Kelima, Check Mesh

Keenam, Melakukan Simulation Model

MessageImage 1585679808836.jpg


Ketujuh, Masuk ke pilihan Fluid Properties.

MessageImage 1585679815745.jpg


Kedelapan, Tentukan Boundary Condition

MessageImage 1585679821818.jpg

MessageImage 1585679828429.jpg

MessageImage 1585679836351.jpg


Kesembilan, Run Solver

MessageImage 1585679842019.jpg

MessageImage 1585679847057.jpg


Kesepuluh, Post Processing with Third Party Tools

MessageImage 1585679854182.jpg

MessageImage 1585679858850.jpg

Gambar diatas menampilkan distribusi tekanan. Warna merah mewakili tekanan tinggi dan warna biru mewakili tekanan rendah. Tekanan semakin rendah menuju outlet karena ada pressure drop yang menyebabkan tekanan loss (kerugian tekanan).


Kesebelas, Mengubah tekanan menjadi kecepatan (p menjadi U)

MessageImage 1585679864741.jpg

Daerah outlet profil kecepatan relative konstan sedangkan daerah di dekat inlet relatif tidak konstan. Hal ini berkaitan dengan entrance region.


Keduabelas, Klik Plot Over Line dalam arah Y. Plot setelah fully develop yaitu setelah melewati entrance length.

MessageImage 1585683360098.jpg


Ketigabelas, Klik Apply dan akan muncul grafik parabola.

MessageImage 1585683367985.jpg

Grafik menunjukkan bahwa kecepatan di dekat dinding adalah 0.


Pertanyaan

1. Apa itu entrance region/aliran masuk?

Entrance region adalah daerah atau bagian pada pipa yang dilalui oleh aliran sampai aliran tersebut mencapai kondisi aliran berkembang sempurna atau Fully develop flow.

2. Apa itu fully developed flow/aliran berkembang sempurna?

Fully developed flow adalah kondisi ketika profil kecepatan aliran akan menjadi tetap besarnya.

3. Apa itu entrance length?

Entrance length adalah jarak yang dilalui aliran setelah memasuki pipa sampai aliran mencapai kondisi aliran berkembang sempurna atau Fully develop flow.

4. Apa pengaruh viskositas? dan pengaruh pressure drop dalam pipa?

Penurunan tekanan (pressure drop) adalah istilah yang digunakan untuk menggambarkan penurunan tekanan dari satu titik dalam pipa ke hilir titik. Penurunan tekanan merupakan hasil dari gaya gesek pada fluida ketika mengalir melalui pipa yang disebabkan oleh resistensi terhadap aliran. Semakin besar gaya gesek pada fluida maka akan menghsilkan penurunan tekanan (pressure drop) yang besar juga. Salah satu penentu utama resistensi terhadap aliran fluida adalah viskositas fluida.

5. Bagaimana cara menghitung pressure drop suatu aliran dalam laminar/turbulen?

Pressure drop.png



Pertemuan 2 (1 April 2020)

Pada pertemuan kedua Mekanika Fluida, materi yang dibahas adalah konservasi yang digunakan sebagai dasar bagi rumus Mekanika Fluida. Konservasi yang dimaksud adalah konservasi massa, konservasi momentum, dan konservasi energi.

1. Konservasi Massa

S 51453959.jpg

2. Konservasi Momentum

S 51453959.jpg

3. Konservasi Energi

S 51453956.jpg


Selain membahas mengenai konservasi, pertemuan kedua juga membahas pertanyaan - pertanyaan pada pertemuan 1, yaitu Entrance Region, Entrance Length, dan Fully Develop Flow. Gambar dibawah menunjukkan ketiga daerah tersebut. Pada pertemuan kedua juga membahas mengenai profile kecepatan aliran laminar pada pipa. Pada bagian dinding didapat kecepatan aliran adalah 0. Hal ini disebabkan oleh adanya gaya tangensial yang disebabkan oleh viskositas aliran dan menyebabkan adanya pressure drop atau penurunan tekanan.

S 51453960.jpg


Tugas 1 April 2020

Pertanyaan

1. Melakukan perhitungan pressure drop atau penurunan tekanan menggunakan CFDSOF pada latihan soal dibawah ini.

S 51453961.jpg


Pertemuan 3 (7 April 2020)

Governing Eq adalah Persamaan yang mengatur gerak laku fluida dengan pendekatan hukum hukum konservasi yang dituangkan dalam persamaan matematis. Persamaan 1 merupakan sebuah Governing Eq yang diturunkan dari Hukum kekekalan massa kemudian persamaan 2 merupakan persamaan momentum. Pada persamaan 2 diketahui bahwa tegangan geser hanya pada arah horizontal atau tidak ada profil kecepatan pada arah vertikal. Sehingga didapat fungsi kecepatan atau profil kecepatan terhadap Y atau u(Y).


S 51830787.jpg


Reynold Number menunjukkan peranan gaya inersia terhadap gaya viscous. Bilangan Inersia adalah rasio antara gaya inersia dengan gaya viscous. Bila Reynold Numbers besar berarti Gaya Inersia lebih dominan dibandingkan Gaya viscous maka aliran tersebut bersifat lebih lembam. Contohnya adalah aliran udara, aliran di sekitar sayap pesawat, dan aliran aerodinamika. Jika sebaliknya, Reynold Numbers yang kecil berarti bahwa gaya inersia tidak dominan terhadap gaya viscous. Contohnya adalah pada pelumasan atau lumbrikasi. Reynold Numbers yang tinggi cenderung menyebabkan aliran fluida menjadi turbulent. Jika Reynold Numbers rendah maka Aliran fluida cenderung laminer karena gaya inersia terabsorb oleh gaya viscous.


Lapisan batas pada aliran fluida terjadi karena adanya interaksi antara dinding dengan partikel fluida menyebabkan timbulnya gaya yang menahan aliran. Lapisan batas merupakan sebuah tebal dari titik 0 pada dinding sampai dengan kecepatan pada lapisannya menyamai kecepatan aliran diluar. Daerah dari titik 0 hingga lapisan atas dan lapisan bawah bertemu disebut entrance region.