I Gusti Agung Ayu Desy Wulandari

From ccitonlinewiki
Revision as of 23:50, 29 February 2020 by I Gusti Agung Ayu Desy Wulandari (talk | contribs) (Resume Kuliah Komputasi Teknik)
Jump to: navigation, search

Data Diri

Nama : I Gusti Agung Ayu Desy Wulandari

NPM : 1906433650

Peminatan : Sistem Utilitas Bangunan dan Keselamatan Kebakaran

Tempat, Tanggal Lahir : Seririt, 17 Desember 1996

Alamat : Jln. Rambutan No. 1, Banjar Griya, Bangli, Bali

Avatar1.jpeg

Pemahaman Mengenai Komputasi Teknik (Current State of Knowledge & Skill)

Awal saya mengenal pengetahuan tentang Komputasi Teknik adalah dari mata kuliah Metode Numerik sebagai dasar dari Komputasi Teknik yang saya peroleh saat menempuh pendidikan S1 di Program Studi Teknik Mesin Universitas Udayana. Kemudian saya mulai mengenal salah satu software Komputasi Teknik yaitu MATLAB dengan metode Newton-Rhapson, meskipun penguasaan saya terhadap software ini yang masih terbilang kurang. Saya sadar bahwa dalam menempuh pendidikan S2 ini sangat diperlukan pemahaman yang baik dalam konsep Komputasi Teknik ini sebagai bekal dalam melaksanakan riset terkait thesis dan juga publikasi ilmiah. Maka dari itu, dengan mengikuti mata kuliah Komputasi Teknik oleh Bapak Dr. Ir. Ahmad Indra Siswantara saya berharap dapat memperoleh banyak ilmu dan manfaat terkait dengan tujuan yang telah saya sebutkan sebelumnya.

Resume Kuliah Komputasi Teknik

Senin, 3 Februari 2020

Komputasi Teknik adalah suatu ilmu dalam penyelesaian permasalahan-permasalahan terkait bidang teknik yang diformulasikan secara matematik dengan cara operasi hitungan. Perlunya penggunaan metode Komputasi Teknik ini dikarenakan tidak semua permasalahan matematis atau perhitungan matematis dapat diselesaikan dengan mudah dan cepat secara metode manual. Terutama suatu permasalahan matematik yang dalam penyelesaiannya bisa menghabiskan berlembar-lembar (bahkan ribuan lembar) perhitungan apabila dikerjakan secara manual.

Pada pertemuan pertama kemarin, Bapak Dr. Ahmad Indra Siswantara menjelaskan bahwa tujuan dari mempelajari Komputasi Teknik ini antara lain :

1. Memahami konsep-konsep dan prinsip-prinsip dalam mempelajari Komputasi Teknik

2. Mampu menerapkan pemahaman tersebut ke dalam bidang ilmu Teknik Mesin

3. Dapat memahami kemampuan dan perkembangan diri kita sendiri setiap harinya, sehingga kita bisa memperoleh delta-delta dari kehidupan dan perkembangan diri kita dimana seiring bertambahnya waktu diri kita maju dan perkembang menjadi pribadi yang lebih baik, terutamanya dalam hal pemahaman mengenai ilmu Komputasi Teknik.


Senin, 10 Februari 2020

Pada pertemuan hari ini Bapak DAI mengharapkan mahasiswa kelas Komputasi Teknik 2020 yang merupakan mahasiswa S2 seharusnya dapat belajar dan mengembangkan kemampuannya sendiri, tanpa bergantung pada orang lain. Setiap individu sejatinya memiliki sifat inersia / kelembamannya masing-masing. Menyimak dari penjelasan Bapak DAI mengenai sifat inersia pada manusia, saya berharap dapat meminimalisir sifat inersia diri saya, sebagai contoh kecilnya adalah niat saya saat bangun tidur di pagi hari. Dari hal kecil tersebut akan membiasakan saya untuk menerapkannya pada hal-hal besar seperti project besar perkuliahan dan aspek-aspek lain dalam hidup saya. Pada pertemuan ini mahasiswa juga diminta untuk memahami apa itu makna dari Analisa. Menurut saya, analisa adalah suatu proses pemecahan suatu permasalahan secara dalam dan detail sehingga diperoleh pemahaman baik mengenai konsep dan prinsip dari permasalahan tersebut. Pengertian ini telah sesuai dengan hasil mufakat dari teman-teman mahasiswa kelas Komputasi Teknik mengenai pengertian analisa. Sedangkan bagi Bapak DAI sendiri, analisa merupakan proses untuk menghasilkan suatu prosedur pemecahan masalah / mendapatkan langkah-langkah solusi untuk suatu masalah.


Senin, 17 Februari 2020

Pak DAI menjabarkan bahwa sebagai mahasiswa kita memiliki 3 musuh utama pada diri kita, antara lain:

1. Ketidaktahuan

2. Egois

3. Malas

Untuk mengatasi 3 musuh atau permasalahan utama tersebut Pak DAI memberi upaya dengan menggunakan istilah kepolisian yaitu "Turn Back Crime" yang berarti memberantas kejahatan (musuh) dalam hidup kita tersebut.


Senin, 24 Februari 2020

QUIZ I

Perbedaan Metode Komputasi Finite Element, Finite Difference dan Finite Volume [1]

Metode finite element adalah metode komputasi yang membagi model CAD menjadi elemen yang sangat kecil tetapi terbatas hingga bentuk geometris sederhana. Kumpulan semua bentuk sederhana ini membentuk apa yang disebut elemen elemen hingga.

Metode finite difference adalah pendekatan paling langsung untuk mendiskritisasi persamaan diferensial parsial. Titik dalam ruang dipertimbangkan di mana akan diambil representasi kontinum dari persamaan dan menggantinya dengan seperangkat persamaan diskrit, yang disebut persamaan finite difference. Metode finite difference biasanya didefinisikan pada kisi-kisi biasa dan fakta ini dapat digunakan untuk metode solusi yang sangat efisien. Oleh karena itu metode ini biasanya tidak digunakan untuk geometri CAD tidak teratur, tetapi lebih sering untuk model persegi panjang atau berbentuk blok.

Metode finite volume mirip dengan metode finite element dalam model CAD pertama-tama dibagi menjadi elemen yang sangat kecil tetapi terbatas bentuk geometris sederhana. Terlepas dari ini, metode finite volume sangat berbeda dari metode finite element, mulai dari konsep elemen, yang sebaliknya disebut sebagai sel.

Setiap metode pada dasarnya sangat mirip karena mewakili metode numerik sistematis untuk menyelesaikan PDE. Satu perbedaan penting adalah kemudahan implementasi. Pendapat umum menyatakan bahwa metode finite difference adalah yang paling mudah untuk diterapkan dan metode finite element adalah yang paling sulit. Salah satu alasannya karena metode finite element membutuhkan matematika yang cukup canggih untuk formulasinya.

Ketiga metode ini sering digunakan saat ini dalam perangkat lunak komersial, serta dalam lingkungan akademik. Metode finite element adalah yang paling umum dalam membebani sistem komputer, tetapi itu tergantung pada jenis analisis yang akan digunakan.

Sinopsis Tugas Akhir (Skripsi) S1

Judul Skripsi : Analisa Kinerja Termal Sistem Pendingin Central Processing Unit (CPU) Berbasis Cascade Straight Heat Pipe

Pengembangan teknologi Central Processing Unit (CPU) komputer telah mengarah ke aplikasi teknologi pintar (Smart Technologies), yang memiliki kinerja lebih baik dengan dimensi yang lebih kecil. Dengan pengurangan dimensi, menyebabkan peningkatan daya dan fluks panas yang signifikan dalam sistem CPU. Penelitian pada skripsi saya bertujuan untuk merancang Cascade Straight Heat Pipe yang memiliki kinerja lebih baik untuk sistem pendingin CPU tanpa perlu daya tambahan dalam pengoperasiannya. Metode yang digunakan dalam penelitian ini adalah secara eksperimental dengan menguji kinerja termal dari cascade straight heat pipe dengan pembebanan kalor 10 watt, 20 watt, 30 watt, dan 40 watt. Pengujian dilakukan pada tiga jenis fluida kerja (air murni, nanofluida Al2O3-air dan nanofluida hibrid Al2O3-TiO2-air). Dari data yang diperoleh, kinerja termal terbaik diberikan oleh cascade straight heat pipe dengan Al2O3-TiO2-air sebagai fluida kerja yang menurunkan temperatur pelat simulator menjadi 41,872% pada beban maksimum, dan memiliki temperatur keluaran kondensor tertinggi. Kinerja termal terbaik kedua diberikan oleh cascade straight heat pipe dengan Al2O3-air sebagai fluida kerja yang menurunkan temperatur plat simulator menjadi 35,243% pada beban maksimum. Kinerja termal yang paling buruk diberikan oleh fluida kerja air yang hanya menurunkan 28.648% temperatur pelat simulator dan memiliki temperatur keluaran kondensor terendah. Cascade straight heat pipe dengan resistansi termal terendah pada setiap pembebanan kalor adalah penggunaan fluida kerja Al2O3-TiO2-air, serta koefisien perpindahan panas yang dimiliki oleh penggunaan Al2O3-TiO2-air adalah yang tertinggi di antara yang lainnya.


Tugas Presentasi

Pemodelan Matematis Hambatan termal pada heat pipe merupakan suatu variabel yang penting dalam perhitungan unjuk kerja termal dari sistem heat pipe. Hambatan termal merupakan perbandingan antara perbedaan temperatur pada bagian evaporator dan kondensor terhadap kalor yang diterimanya. Total hambatan termal pada heat pipe ditulis seperti persamaan sebagai berikut :

R = (Te - Tc) / Q = deltaT / Q

Dimana R adalah hambatan termal Te adalah temperatur pada bagian evaporator heat pipe Tc adalah temperatur pada bagian kondenser heat pipe dan Q adalah beban kalor yang diberikan pada heat pipe

Skematik R.PNG

Hambatan termal pada cascade straight heat pipe dapat dilihat pada gambar skematik di atas, dan secara teoritis, hambatan termal sistem (total) pada cascade straight heat pipe merupakan penjumlahan dari masing-masing hambatan termal lokal dari beberapa bagian heat pipe, sehingga bisa dirumuskan seperti pada persamaan pada gambar.

Hambatan termal yang terjadi pada bagian evaporator terdiri dari hambatan termal pada dinding, wick, dan evaporasi.

R evap.PNG

Rwall merupakan hambatan termal yang ditimbulkan oleh dinding evaporator, Lwall merupakan tebal dari dinding yang besarnya 0.0005 m, kwall merupakan konduktivitas termal bahan penyusun dinding evaporator (tembaga) yang besarnya 401 watt/mK, Ae merupakan luas bidang evaporator yang mengalami perpindahan panas yang besarnya 0.00031 m2 . Rwick merupakan hambatan termal yang ditimbulkan oleh wick, Lwick merupakan tebal dari wick yang besarnya 0.001 m. Revaporasi merupakan hambatan termal yang ditimbulkan oleh terjadinya proses evaporasi fluida kerja, h merupakan koefisien perpindahan panas konveksi.

Sama seperti hambatan termal pada evaporator, hambatan termal pada kondensor terdiri dari hambatan termal wall dan wick. Namun, hambatan termal evaporasi pada evaporator, disini digantikan oleh hambatan termal kondensasi.

R cond.PNG

Adapun besarnya Lwall pada kondensor adalah 0.0005 m, kwall besarnya 401 watt/mK, Ac besarnya 0.00031 m2, dan keff besarnya 20.8 watt/mK.

Yang ketiga adalah hambatan termal yang ditimbulkan konduksi oleh dinding secara aksial. Besarnya dapat dihitung dengan menggunakan persamaan berikut :

R konduksi.PNG

le, la, dan lc merupakan panjang dari bagian evaporator, adiabatis, dan kondensor secara berurutan yang besarnya 0.03, 0.11, dan 0.04 m. Kemudian ks adalah konduktivitas termal dari bahan penyusun dinding heat pipe dan kw adalah konduktivitas termal dari bahan penyusun wick yang mana karena keduanya sama-sama terbuat dari tembaga maka konduktivitas termalnya sama-sama 401 watt/mK.


Referensi

  1. MachineDesign. 2016. What’s The Difference Between FEM, FDM, and FVM?. Tersedia pada: [1]. [Diakses: 29-Februari-2020].